logo

SCIENTIA SINICA Informationis, Volume 48 , Issue 11 : 1497-1509(2018) https://doi.org/10.1360/N112018-00158

Towards creative language generation: exploring Chinese humor generation

More info
  • ReceivedJun 20, 2018
  • AcceptedSep 27, 2018
  • PublishedNov 14, 2018

Abstract


Funded by

国家自然科学基金(61673248,61772324)

山西省“1331工程"重点学科建设计划


References

[1] Nijholt A, Andreea I N, Valitutti A, et al. Humor in human-computer interaction: a short survey. In: Proceedings of Workshop on Designing Humor in Human-Computer Interaction. Berlin: Springer, 2017. 527--530. Google Scholar

[2] Ritchie G. The JAPE Riddle Generator: Technical Specification. Informatics Research Report EDI-INF-RR-0158. 2003. Google Scholar

[3] Stock O, Strapparava C. HAHAcronym: a computational humorsystem. In: Proceedings of the ACL Interactive Poster and Demonstration Sessions, Ann Arbor, 2005. 113--116. Google Scholar

[4] Petrovi'c S, Matthews D. Unsupervised joke generation from big data. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofia, 2013. 228--232. Google Scholar

[5] Aggarwal S, Mamidi R. Automatic generation of jokes in hindi. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics-Student Research Workshop, Vancouver, 2017. 69--74. Google Scholar

[6] Ren H, Yang Q. Neural Joke Generation. Final Project Reports of Course CS224n. 2017. Google Scholar

[7] Raskin V. Semantic Mechanisms of Humor. Berlin: Springer, 1985. Google Scholar

[8] Ritchie G. Can Computers Create Humor?. AIMag, 2009, 30: 71 CrossRef Google Scholar

[9] Lin H F, Zhang D Y, Yang L, et al. Computational humor researches and applications. J Shandong Univ (Natl Sci). 2016, 51: 1--10. Google Scholar

[10] Strapparava C, Stock O, Mihalcea R. Computational humour. In: Emotion-Oriented Systems. Berlin: Springer, 2011. 609--634. Google Scholar

[11] Attardo S, Raskin V. Script theory revis(it)ed: joke similarity and joke representation model. Humor - Int J Humor Res, 1991, 4 CrossRef Google Scholar

[12] Valitutti A, Doucet A, Toivanen J M. Computational generation and dissection of lexical replacement humor. Nat Lang Eng, 2016, 22: 727-749 CrossRef Google Scholar

[13] Özbal G, Strapparava C. Computational humour for creative naming. In: Proceedings of the 3rd International Workshop on Computational Humor, Amsterdam, 2012. 15--18. Google Scholar

[14] Binsted K, Ritchie G. Computational rules for generating punning riddles. Humor - Int J Humor Res, 1997, 10 CrossRef Google Scholar

[15] Tinholt H W, Nijholt A. Computational humour: utilizing cross-reference ambiguity for conversational jokes. In: Proceedings of International Workshop on Fuzzy Logic and Applications, Camogli, 2007. 477--483. Google Scholar

[16] Labutov I, Lipson H. Humor as circuits in semantic networks. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Jeju Island, 2012. 150--155. Google Scholar

[17] Du S K, Wan X J, Ye Y J. Towards automatic generation of entertaining dialogues in chinese crosstalks. 2017,. arXiv Google Scholar

[18] Cho K, van Merrienboer B, Gulcehre C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Proceedings of the Empiricial Methods in Natural Language Processing, 2014. Google Scholar

[19] Luong M T, Pham H, Manning C D. Effective approaches to attention-based neural machine translation. In: Processing of Conference on Empirical Methods in Natural Language Processing, Lisbon, 2015. 1412--1421. Google Scholar

[20] Goodfellow I J, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. In: Proceedings of Advances in Neural Information Processing Systems, 2014. 2672--2680. Google Scholar

[21] Lamb A, Goyal A, Zhang Y, et al. Professor forcing: a new algorithm for training recurrent networks. In: Proceedings of the 30th Conferenc on Neural Information Processing Systemss, Barcelona, 2016. 4601--4609. Google Scholar

[22] Yu L T, Zhang W N, Wang J, et al. SeqGAN: sequence generative adversarial nets with policy gradient. In: Proceedings of the 31st AAAI Conference on Artificial Intelligence, 2017. 2852--2858. Google Scholar

[23] Li J W, Monroe W, Shi T L, et al. Adversarial learning for neural dialogue generation. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, 2017. Google Scholar

[24] Shetty R, Rohrbach M, Hendricks L A, et al. Speaking the same language: matching machine to human captions by adversarial training. In: Proceedings of IEEE International Conference on Computer Vision, 2017. 4155--4164. Google Scholar

[25] Serban I V, Sordoni A, Bengio Y, et al. Building end-to-end dialogue systems using generative hierarchical neural network models. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, 2016. 3776--3783. Google Scholar

[26] Li J W, Monroe W, Ritter A, et al. Deep reinforcement learning for dialogue generation. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, 2016. Google Scholar

[27] Yang D, Lavie A, Dyer C, et al. Humor recognition and humor anchor extraction. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Lisbon, 2015. 2367--2376. Google Scholar

[28] Miller T, Gurevych I. Automatic disambiguation of english puns. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, Beijing, 2015. 719--729. Google Scholar

[29] Mihalcea R, Strapparava C. Making computers laugh: investigations in automatic humor recognition. In: Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing, Association for Computational Linguistics, Vancouver, 2005. 531--538. Google Scholar

[30] Shang L F, Lu Z D, Li H. Neural responding machine for short-text conversation. In: Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics, Beijing, 2015. 1577--1586. Google Scholar

  • Figure 1

    Punchline generation based on the encoder-decoder framework

  • Figure 2

    Punchline generation based on GANs

  • Table 1   Examples of jokes construction
    No. Joke examples
    1
    同样是又馋又懒,
    熊猫和猪告诉我们长相有多么重要.
    (set_up)
    (punchline)
    2
    长得丑怎么了, 我自己又看不到,
    恶心的是你们.
    (set_up)
    (punchline)
    3
    A: 你觉着我长这样儿是不是应该去整整容了?
    B: 我觉着可以直接人道毁灭了.
    (set_up)
    (punchline)
    4
    A: 为什么深海鱼都很丑?
    B: 因为太黑谁也看不见谁, 大家就随便长长喽.
    (set_up)
    (punchline)
  • Table 2   Datasets used in our models
    Dataset Size Sources
    Training data 500000
    480000 pairs of conversation from Sina Weibo
    and 15000 one-liner jokes or single-turn jokes
    Valid data 5000 One-liner jokes or jokes single-turn conversation
    Test data 1000 One-liner jokes or jokes single-turn conversation
  • Table 3   Examples of human evaluation
    Set_up Punchline Coherence Funniness
    A:单身是无罪的. B:你是不是说我是无罪的? 1 1
  • Table 4   Impact of Weibo dataset on systems
    Model BLEU-4
    SYS$_\text{encoder-decoder}$(with Weibo dataset) 11.79
    SYS$_\text{encoder-decoder}$(no Weibo dataset) 10.04
  • Table 5   Results of the different models on test-set$_{1000}$
    Model BLEU-4
    SYS$_\text{encoder-decoder}$ 11.79
    Adver-REGS 12.07
    SYS$_\text{GANs-joke}$(single) 14.67
    SYS$_\text{GANs-joke}$(ensemble) 14.8
  • Table 6   Results of the different models on test-set$_{500}$
    Model Ratio of jokes (%)
    SYS$_{\rm~encoder-decoder}$ 10.2
    Adver-REGS 13.4
    SYS$_{\rm~GANs-joke}$(single) 16.6
    SYS$_{\rm~GANs-joke}$(ensemble) 16.8
  • Table 7   Examples of the system generation
    No. Set_up Punchline
    1 你的数学成绩超过你的体重了吗?
    Human: 这真是个血腥的问题.
    SYS$_\text{encoder-decoder}$: 没唉.
    SYS$_\text{GANs-joke(single)}$: 再胖下去也不对吧, 我认了.
    2 你觉着我长这样儿是不是应该去整整容了?
    Human: 我觉着可以直接人道毁灭了.
    SYS$_\text{encoder-decoder}$: 我知道了.
    SYS$_\text{GANs-joke(single)}$: 我去, 你这辈子不要去医院了.
    3 为什么深海鱼都很丑?
    Human: 因为太黑谁也看不见谁, 大家就随便长长喽.
    SYS$_\text{encoder-decoder}$: 因为你丑.
    SYS$_\text{GANs-joke(single)}$: 因为他们没结婚.