logo

SCIENTIA SINICA Informationis, Volume 48 , Issue 11 : 1510-1520(2018) https://doi.org/10.1360/N112018-00151

Heterographic pun identification model based on multi-dimensional semantic relationships

More info
  • ReceivedJun 13, 2018
  • AcceptedSep 10, 2018
  • PublishedNov 14, 2018

Abstract


Funded by

国家自然科学基金重点项目(61632011)

国家自然科学基金(61772103)

国家自然科学基金(61702080)

国家社会科学基金一般项目(15BYY028)

辽宁省自然基金(20170540230,2015020017,20170540232)

辽宁省优秀人才项目(LJQ2014127)


References

[1] Tristan M. Towards the automatic detection and identification of English puns. Eur J Humour Res, 2016, 1: 59--75. Google Scholar

[2] Taylor J M. Ontology-based view of natural language meaning: the case of humor detection. J Ambient Intell Human Comput, 2010, 1: 221-234 CrossRef Google Scholar

[3] Taylor J M. Computational detection of humor: a dream or a nightmare? the ontological semantics approach. In: Proceedings of International Joint Conferences on Web Intelligence and Intelligent Agent Technology, Milano, 2009. 429--432. Google Scholar

[4] Reyes A, Rosso P, Buscaldi D. From humor recognition to irony detection: The figurative language of social media. Data Knowledge Eng, 2012, 74: 1-12 CrossRef Google Scholar

[5] Yishay R. Automatic humor classification on twitter. In: Proceedings of the NAACL HLT, Montréal, 2012. 66--70. Google Scholar

[6] Dario B, Pascale F. Deep learning of audio and language features for humor prediction. In: Proceedings of International Conference on Language Resources and Evaluation, Portoroz, 2016. 496--501. Google Scholar

[7] Dario B, Pascale F. Predicting humor response in dialogues from TV sitcoms. In: Proceedings of ICASSP, Shanghai, 2016. 5780--5784. Google Scholar

[8] Dario B, Pascale F. A long short-term memory framework for predicting humor in dialogues. In: Proceedings of NAACL HLT, San diego, 2016. 130--135. Google Scholar

[9] Zhang R X, Liu N S. Recognizing humor on twitter. In: Proceedings of the 23rd ACM International Conference on Information and Knowledge Management, Shanghai, 2014. 889--898. Google Scholar

[10] Reyes A, Buscaldi D, Rosso P. An analysis of the impact of ambiguity on automatic humour recognition. Lecture Notes Comput Sci, 2009, 5729: 162--169. Google Scholar

[11] Buscaldi D, Rosso P. Some experiments in humour recognition using the italian wikiquote collection. In: Proceedings of International Workshop on Fuzzy Logic and Applications: Applications of Fuzzy Sets Theory. Berlin: Springer, 2007. 464--468. Google Scholar

[12] Igor L, Hod L. Humor as circuits in semantic networks. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, Baltimore, 2012. 150--155. Google Scholar

[13] Alessandro V, Hannu T. “Let everything turn well in your wife": generation of adult humor using lexical constraints. In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, Sofa, 2013. 243--248. Google Scholar

[14] Zhang D Y, Yang L, Zheng P Q, et al. Construction and application of affective metaphor corpus. Sci Sin Inform, 2015, 45: 1574--1587. Google Scholar

[15] Lin H F, Zhang D Y, Yang L, et al. Computational humor researches and applications. J Shandong Univ, 2016, 7: 1--10. Google Scholar

[16] Ritchie G. Computational mechanisms for pun generation. In: Proceedings of the 10th European Workshop on Natural Language Generation, 2005. 8--10. Google Scholar

[17] Hempelmann C F. Computational humor: beyond the pun? the primer of humor research. Humor Res, 2008, 8: 333--360. Google Scholar

[18] Hong B A, Ong E. Automatically extracting word relationships as templates for pun generation. In: Proceedings of the NAACL HLT, Boulder, 2009. 24--31. Google Scholar

[19] Chloe K, Yuriy B. That's what she said: double entendre identification. In: Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics, Portland, 2011. 89--94. Google Scholar

[20] Yang D Y, Lavie A, Dyer C, et al. Humor recognition and humor anchor extraction. In: Proceedings of Conference on Empirical Methods in Natural Language Processing, Lisbon, 2015. 2367--2376. Google Scholar

[21] Tristan M, Iryna G. Automatic disambiguation of English puns. In: Proceedings of Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, Beijing, 2015. 719--729. Google Scholar

[22] Arnold Z, Elizabeth Z. Imperfect puns, markedness, and phonological similarity: with fronds like these, who needs anemones. Folia Linguist, 1986, 20: 493--503. Google Scholar

[23] Wlodzimierz S. Metaphonology of English Paronomasic Puns. Bern: Peter Lang Pub Inc, 1991. 1--325. Google Scholar

[24] Kim B. Machine humour: an implemented model of puns. Dissertation for Ph.D. Degree. Edinburgh: University of Edinburgh, 1996. Google Scholar

[25] Robinson T. The British English example pronunciation dictionary. Cambridge: Cambridge University Press, 1996. 1--8. Google Scholar

[26] Hempelmann C F. Paronomasic puns: target recoverability towards automatic generation. Dissertation for Ph.D. Degree. West Lafayette: Purdue University, 2003. Google Scholar

[27] Kao J T, Roger L, Goodman N D. A Computational model of linguistic humor in puns. Cogn Sci, 2016, 5: 1270--1285. Google Scholar

[28] Jaech A, Koncel--Kedziorski R, Ostendorf M. Phonological pun uderstanding. In: Proceedings of NAACL HLT, San Diego, 2016. 654--663. Google Scholar

[29] Samuel D, Aniruddha G, Hanyang C. Idiom savantat semeval--2017 task7: detection and interpretation of English puns. In: Proceedings of the 11th International Workshop on Semantic Evaluations, Vancouver, 2017. 103--108. Google Scholar

[30] Dipankar D, Aniket P. JUCSE NLP at SemEval2017 Task7: Employing rules to detect and interpret English puns. In: Proceedings of the 11th International Workshop on Semantic Evaluations, Vancouver, 2017. 432--435. Google Scholar

[31] Diao Y F, Lin H F, Wu D. WECA: a wordnet-encoded collocation attention network for homographic pun. In: Proceedings of EMNLP, Brussels, 2018. 432--435. Google Scholar

[32] Wang C M, Peng D L. The roles of surface frequencies cumulative morpheme frequencies, and semantic transparencies in the processing of compound words. Acta Psychol Sin, 1999, 3: 266--273. Google Scholar

[33] Cruise D A. Lexical Semantics. Cambridge: Cambridge University Press, 1991. Google Scholar

[34] Mok L W. Word-superiority effect as a function of semantic transparency of Chinese bimorphemic compound words. Language Cognitive Processes, 2009, 24: 1039-1081 CrossRef Google Scholar

[35] Pollatsek A, Hy?n? J. The role of semantic transparency in the processing of Finnish compound words. Language Cognitive Processes, 2005, 20: 261-290 CrossRef Google Scholar

[36] Fellbaum C. WordNet: An Electronic Lexical Database. Cambridge: MIT Press, 1998. 1--423. Google Scholar

[37] Kenneth H, Ivan P, Jonathan H, et al. Scalable modified kneser-ney language model estimation. In: Proceedings of Annual Meeting of the Association for Computational Linguistics, Sofia, 2013. 690--696. Google Scholar

[38] Henry K, Nelson F. Computational Analysis of Present-day American English. Providence: Brown University Press, 1967. 1--424. Google Scholar

[39] Castro S, Cubero M, Garat D, et al. Is this a Joke? detecting humor in spanish tweets. In: Proceedings of IBERAMIA, San José, 2016. 139--150. Google Scholar

  • Figure 1

    (Color online) Puns recognition algrithm based BDT

  • Table 1   The pun recognition results of superimposed all features
    Features Precision (%) Recall (%) Accuracy (%) $F1$ (%)
    Semantic transparency 46.57 28.80 88.83 43.49
    Semantic transparency + semantic relevance 48.88 33.02 89.85 47.22
    Semantic transparency + semantic relevance 62.87 57.12 86.22 68.72
    + phonetic expansibility
    Semantic transparency + semantic relevance 78.48 82.93 86.39 84.62
    + phonetic expansibility + syntax features
    The number one of 2017SemEval [30] 78.37 81.90 87.04 84.39
  • Table 2   The recognition results of each dimension features
    Features Precision (%) Recall (%) Accuracy (%) $F1$ (%)
    Semantic relevance 32.02 4.88 98.41 9.30
    Semantic transparency 46.57 28.80 88.83 43.49
    Phonetic expansibility 52.58 39.89 86.37 54.57
    Syntax features 69.61 63.49 91.29 74.90
  • Table 3   The recognition results of three syntactical structure features
    Features Precision (%) Recall (%) Accuracy (%) $F1$ (%)
    Names 42.75 20.61 96.32 33.96
    Capitalization 30.56 3.93 76.92 7.49
    Tense 67.08 58.22 93.03 71.64