logo

SCIENTIA SINICA Informationis, Volume 49 , Issue 4 : 369-384(2019) https://doi.org/10.1360/N112018-00146

Impurity engineering of Czochralski silicon: effects of germanium-doping

More info
  • ReceivedJun 5, 2018
  • AcceptedDec 10, 2018
  • PublishedMar 29, 2019

Abstract


Funded by

国家自然科学基金(51532007)

国家自然科学基金(61674126)

国家自然科学基金(61721005)


References

[1] Yoshida Y, Langouche G. Defects and Impurities in Silicon Materials. Berlin: Springer, 2015. Google Scholar

[2] Sinno T, Dornberger E, von Ammon W. Defect engineering of Czochralski single-crystal silicon. Mater Sci Eng-R-Rep, 2000, 28: 149-198 CrossRef Google Scholar

[3] Yu X, Chen J, Ma X. Impurity engineering of Czochralski silicon. Mater Sci Eng-R-Rep, 2013, 74: 1-33 CrossRef Google Scholar

[4] Faber K T, Malloy K J. The Mechanical Properties of Semiconductors. Boston: Academic Press, 1992. Google Scholar

[5] Gong L, Ma X, Tian D. Formation of a denuded zone in nitrogen-doped Czochralski silicon wafer treated by ramping anneals. Semicond Sci Technol, 2005, 20: 228-232 CrossRef ADS Google Scholar

[6] Shabani M B. Low-Temperature Out-Diffusion of Cu from Silicon Wafers. J Electrochem Soc, 1996, 143: 2025-2029 CrossRef Google Scholar

[7] Tan T Y, Gardner E E, Tice W K. Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si. Appl Phys Lett, 1977, 30: 175-176 CrossRef ADS Google Scholar

[8] Gilles D, Weber E R, Hahn S K. Mechanism of internal gettering of interstitial impurities in Czochralski-grown silicon. Phys Rev Lett, 1990, 64: 196-199 CrossRef PubMed ADS Google Scholar

[9] Myers S M, Seibt M, Schro?ter W. Mechanisms of transition-metal gettering in silicon. J Appl Phys, 2000, 88: 3795-3819 CrossRef ADS Google Scholar

[10] Munakata T, Someya S, Tanasawa I. Effect of high frequency magnetic field on CZ silicon melt convection. Int J Heat Mass Transfer, 2004, 47: 4525-4533 CrossRef Google Scholar

[11] Huth S, Breitenstein O, Huber A. Localization and detailed investigation of gate oxide integrity defects in silicon MOS structures. MicroElectron Eng, 2001, 59: 109-113 CrossRef Google Scholar

[12] Falster R, Voronkov V V, Quast F. On the Properties of the Intrinsic Point Defects in Silicon: A Perspective from Crystal Growth and Wafer Processing. phys stat sol (b) 2000, 222: 219--244. Google Scholar

[13] Voronkov V V, Falster R. Grown-in microdefects, residual vacancies and oxygen precipitation bands in Czochralski silicon. J Cryst Growth, 1999, 204: 462-474 CrossRef ADS Google Scholar

[14] Sumino K. Deformation behavior of silicon. Metall Mat Trans A, 1999, 30: 1465-1479 CrossRef Google Scholar

[15] Yonenaga I, Sumino K, Hoshi K. Mechanical strength of silicon crystals as a function of the oxygen concentration. J Appl Phys, 1984, 56: 2346-2350 CrossRef ADS Google Scholar

[16] Fischer A, Kissinger G. Load induced stresses and plastic deformation in 450 mm silicon wafers. Appl Phys Lett, 2007, 91: 111911 CrossRef ADS Google Scholar

[17] Hu S M. Temperature Distribution and Stresses in Circular Wafers in a Row During Radiative Cooling. J Appl Phys, 1969, 40: 4413-4423 CrossRef ADS Google Scholar

[18] Mezhennyi M V, Mil'vidskii M G, Prostomolotov A I. Simulation of the stresses produced in large-diameter silicon wafers during thermal annealing. Phys Solid State, 2003, 45: 1884-1889 CrossRef ADS Google Scholar

[19] Yang D R, Yu X G. Nitrogen in silicon. Defect Diffusion Forum, 2004, 230: 199--220. Google Scholar

[20] Yu X, Yang D, Ma X. Grown-in defects in nitrogen-doped Czochralski silicon. J Appl Phys, 2002, 92: 188-194 CrossRef ADS Google Scholar

[21] Yu X, Yang D, Ma X. Oxidation-induced stacking faults and related grown-in oxygen precipitates in nitrogen-doped Czochralski silicon. Semicond Sci Technol, 2003, 18: 393-397 CrossRef ADS Google Scholar

[22] Li D, Yang D, Que D. Effects of nitrogen on dislocations in silicon during heat treatment. Physica B-Condensed Matter, 1999, 273-274: 553-556 CrossRef ADS Google Scholar

[23] Lu H, Yang D, Li L, et al. Thermal Warpage of Czochralski Silicon Wafers Grown under a Nitrogen Ambience. phys stat sol (a) 1998, 169: 193--198. Google Scholar

[24] Sueoka K, Akatsuka M, Yonemura M. Effect of Heavy Carbon, Nitrogen and Boron Doping on Oxygen Precipitation Behavior in Silicon Epitaxial Wafers. SSP, 2001, 82-84: 49-56 CrossRef Google Scholar

[25] Mezhennyi M V, Mil'vidskii M G, Reznik V Y. Specific features in the generation and motion of dislocations in silicon single crystals doped with nitrogen. Phys Solid State, 2002, 44: 1278-1283 CrossRef ADS Google Scholar

[26] Voronkov V V, Falster R. The effect of nitrogen on void formation in Czochralski silicon crystals. J Cryst Growth, 2005, 273: 412-423 CrossRef ADS Google Scholar

[27] Yang D, Chen J, Li H. Germanium effect on oxygen-related defects in Czochralski silicon. phys stat sol (a), 2006, 203: 685-695 CrossRef ADS Google Scholar

[28] Yang D, Chen J, Li H. Micro-defects in Ge doped Czochralski grown Si crystals. J Cryst Growth, 2006, 292: 266-271 CrossRef ADS Google Scholar

[29] Wu P, Chen J, Ma X. Effect of vacancies on oxygen precipitation in germanium-doped Czochralski silicon. J Appl Phys, 2010, 107: 073518 CrossRef ADS Google Scholar

[30] Dong P, Zhao J, Liang X B, et al. Oxygen precipitation in 10(20) cm(-3) germanium-doped Czochralski silicon. J Appl Phys, 2015, 117: 025705. Google Scholar

[31] Xu W, Chen J, Ma X. Characterization of a Czochralski grown silicon crystal doped with 1020 cm-3 germanium. Cryst Res Technol, 2011, 46: 10-13 CrossRef Google Scholar

[32] Li H, Yang D, Ma X. Germanium effect on oxygen precipitation in Czochralski silicon. J Appl Phys, 2004, 96: 4161-4165 CrossRef ADS Google Scholar

[33] Yang D, Chen J, Ma X. Impurity engineering of Czochralski silicon used for ultra large-scaled-integrated circuits. J Cryst Growth, 2009, 311: 837-841 CrossRef ADS Google Scholar

[34] Chen J, Yang D. Impurity engineering for germanium-doped Czochralski silicon wafer used for ultra large scale integrated circuit. phys stat sol (c), 2009, 6: 625-632 CrossRef ADS Google Scholar

[35] Yonenaga I. Growth and fundamental properties of SiGe bulk crystals. J Cryst Growth, 2005, 275: 91-98 CrossRef ADS Google Scholar

[36] Taishi T, Huang X, Yonenaga I. Dislocation behavior in heavily germanium-doped silicon crystal. Mater Sci Semiconductor Processing, 2002, 5: 409-412 CrossRef Google Scholar

[37] Yonenaga I. Growth and mechanical properties of GeSi bulk crystals. J Mater Sci-Mater Electron, 1999, 10: 329-333 CrossRef Google Scholar

[38] Liu E K, Zhu B S, Luo J S. Physics of Smiconductor: Version 7. Beijing: Publishing House of Electronics Industry, 2011. Google Scholar

[39] Istratov A A, Weber E R. Electrical properties and recombination activity of copper, nickel and cobalt in silicon. Appl Phys A-Mater Sci Processing, 1998, 66: 123-136 CrossRef ADS Google Scholar

[40] Chen J H. Microdefects and defect engineering of iso-group elements doped Czochralski used for large-scale integrated circuits. Dissertation for Ph.D. Degree. Hangzhou: Zhejaing University, 2008. Google Scholar

[41] Borghesi A, Pivac B, Sassella A. Oxygen precipitation in silicon. J Appl Phys, 1995, 77: 4169-4244 CrossRef ADS Google Scholar

[42] Hu S M, Patrick W J. Effect of oxygen on dislocation movement in silicon. J Appl Phys, 1975, 46: 1869-1874 CrossRef ADS Google Scholar

[43] Sumino K, Yonenaga I. Chapter 11 Oxygen Effect on Mechanical Properties. Semiconductors Semimetals, 1994, 42: 449--511. Google Scholar

[44] Brelot A, Charlemagne J. Infrared studies of low temperature electron irradiated silicon containing germanium oxygen and carbonâ. Radiat Effects, 1971, 9: 65-73 CrossRef Google Scholar

[45] Yang D, Yu X, Ma X. Germanium effect on void defects in Czochralski silicon. J Cryst Growth, 2002, 243: 371-374 CrossRef ADS Google Scholar

[46] Yu X, Yang D, Ma X. Intrinsic gettering in germanium-doped Czochralski crystal silicon crystals. J Cryst Growth, 2003, 250: 359-363 CrossRef ADS Google Scholar

[47] Wang L, Yang D. Structure of Ge-O complexes in Czochralski silicon. Physica B-Condensed Matter, 2009, 404: 58-60 CrossRef ADS Google Scholar

[48] Chen J, Yang D, Li H. Germanium effect on as-grown oxygen precipitation in Czochralski silicon. J Cryst Growth, 2006, 291: 66-71 CrossRef ADS Google Scholar

[49] Ma X, Tian D, Gong L. Effect of ramping anneals under inert or oxidizing ambient on the formation of oxygen precipitate denuded zone in nitrogen-doped Czochralski silicon wafers. phys stat sol (a), 2006, 203: 1934-1939 CrossRef ADS Google Scholar

[50] Cui C, Yang D, Yu X. Effect of nitrogen on denuded zone in Czochralski silicon wafer. Semicond Sci Technol, 2004, 19: 548-551 CrossRef ADS Google Scholar

[51] Chen J, Yang D, Ma X. Intrinsic gettering Based on rapid thermal annealing in germanium-doped Czochralski silicon. J Appl Phys, 2007, 101: 033526 CrossRef ADS Google Scholar

[52] Oehrlein G S, Lindstr?m J L, Corbett J W. Carbon-oxygen complexes as nuclei for the precipitation of oxygen in Czochralski silicon. Appl Phys Lett, 1982, 40: 241-243 CrossRef ADS Google Scholar

[53] Livingston F M, Messoloras S, Newman R C. An infrared and neutron scattering analysis of the precipitation of oxygen in dislocation-free silicon. J Phys C-Solid State Phys, 1984, 17: 6253-6276 CrossRef ADS Google Scholar

[54] Newman R C. Oxygen diffusion and precipitation in Czochralski silicon. J Phys-Condens Matter, 2000, 12: R335-R365 CrossRef ADS Google Scholar

[55] Izunome K, Shirai H, Kashima K. Oxygen precipitation in Czochralski-grown silicon wafers during hydrogen annealing. Appl Phys Lett, 1996, 68: 49-50 CrossRef ADS Google Scholar

[56] Chen J, Yang D, Ma X. Investigation of intrinsic gettering for germanium doped Czochralski silicon wafer. J Appl Phys, 2007, 101: 113512 CrossRef ADS Google Scholar

[57] Bergholz W, Gilles D. Impact of Research on Defects in Silicon on the Microelectronic Industry. phys stat sol (b) 2000, 222: 5--23. Google Scholar

[58] Nishikawa H, Tanaka T, Yanase Y. Formation of Grown-in Defects during Czochralski Silicon Crystal Growth. Jpn J Appl Phys, 1997, 36: 6595-6600 CrossRef ADS Google Scholar

[59] Itsumi M, Akiya H, Ueki T. Octahedral-Structured Gigantic Precipitates as the Origin of Gate-Oxide Defects in Metal-Oxide-Semiconductor Large-Scale-Integrated Circuits. Jpn J Appl Phys, 1996, 35: 812-817 CrossRef ADS Google Scholar

[60] Ryuta J, Morita E, Tanaka T. Crystal-Originated Singularities on Si Wafer Surface after SC1 Cleaning. Jpn J Appl Phys, 1990, 29: L1947-L1949 CrossRef ADS Google Scholar

[61] Graf D. Characterization of Crystal Quality by Crystal Originated Particle Delineation and the Impact on the Silicon Wafer Surface. J Electrochem Soc, 1998, 145: 275-284 CrossRef Google Scholar

[62] Kato M, Yoshida T, Ikeda Y. Transmission Electron Microscope Observation of “IR Scattering Defects” in As-Grown Czochralski Si Crystals. Jpn J Appl Phys, 1996, 35: 5597-5601 CrossRef ADS Google Scholar

[63] Yu X, Yang D, Ma X. Hydrogen annealing of grown-in voids in nitrogen-doped Czochralski grown silicon. Semicond Sci Technol, 2003, 18: 399-403 CrossRef ADS Google Scholar

[64] Chen J, Yang D, Li H. Crystal-originated particles in germanium-doped Czochralski silicon crystal. J Cryst Growth, 2007, 306: 262-268 CrossRef ADS Google Scholar

[65] Vanhellemont J, Zhang X, Xu W. On the assumed impact of germanium doping on void formation in Czochralski-grown silicon. J Appl Phys, 2010, 108: 123501 CrossRef ADS Google Scholar

[66] Voronkov V V, Falster R. Vacancy-type microdefect formation in Czochralski silicon. J Cryst Growth, 1998, 194: 76-88 CrossRef ADS Google Scholar

[67] Cook R F. Strength and sharp contact fracture of silicon. J Mater Sci, 2006, 41: 841-872 CrossRef ADS Google Scholar

[68] Chen J, Yang D, Ma X. Influence of germanium doping on the mechanical strength of Czochralski silicon wafers. J Appl Phys, 2008, 103: 123521 CrossRef ADS Google Scholar

[69] Yonenaga I, Sumino K. Influence of oxygen precipitation along dislocations on the strength of silicon crystals. J Appl Phys, 1996, 80: 734-738 CrossRef ADS Google Scholar

[70] Senkader S, Jurkschat K, Gambaro D, et al. On the locking of dislocations by oxygen in silicon. Philos Mag A, 2001, 81: 759--775. Google Scholar

[71] Dash W C. Growth of Silicon Crystals Free from Dislocations. J Appl Phys, 1959, 30: 459-474 CrossRef ADS Google Scholar

[72] Taishi T, Huang X, Yonenaga I. Dislocation-free Czochralski Si crystal growth without a thin neck: dislocation behavior due to incomplete seeding. J Cryst Growth, 2003, 258: 58-64 CrossRef ADS Google Scholar

[73] Huang X, Sato T, Nakanishi M. High Strength Si Wafers with Heavy B and Ge Codoping. Jpn J Appl Phys, 2003, 42: L1489-L1491 CrossRef ADS Google Scholar

[74] Li H, Yang D, Yu X. The effect of germanium doping on oxygen donors in Czochralski-grown silicon. J Phys-Condens Matter, 2004, 16: 5745-5750 CrossRef ADS Google Scholar

[75] Wang P, Yu X, Chen P. Germanium-doped Czochralski silicon for photovoltaic applications. Sol Energy Mater Sol Cells, 2011, 95: 2466-2470 CrossRef Google Scholar

[76] Yu X, Wang P, Chen P. Suppression of boron-oxygen defects in p-type Czochralski silicon by germanium doping. Appl Phys Lett, 2010, 97: 051903 CrossRef ADS Google Scholar

[77] Vanhellemont J, Chen J, Lauwaert J. Germanium doping for improved silicon substrates and devices. J Cryst Growth, 2011, 317: 8-15 CrossRef ADS Google Scholar

[78] Londos C A, Sgourou E N, Hall D. Vacancy-oxygen defects in silicon: the impact of isovalent doping. J Mater Sci-Mater Electron, 2014, 25: 2395-2410 CrossRef Google Scholar

[79] Arivanandhan M, Gotoh R, Fujiwara K. Grown-in microdefects and photovoltaic characteristics of heavily Ge co-doped Czochralski-grown p-type silicon crystals. Scripta Mater, 2013, 69: 686-689 CrossRef Google Scholar

[80] Sueoka K, Kamiyama E, Vanhellemont J. Density functional theory study on the impact of heavy doping on Si intrinsic point defect properties and implications for single crystal growth from a melt. J Appl Phys, 2013, 114: 153510 CrossRef ADS Google Scholar

[81] Vanhellemont J, Suezawa M, Yonenaga I. On the impact of germanium doping on the vacancy formation energy in Czochralski-grown silicon. J Appl Phys, 2010, 108: 016105 CrossRef ADS Google Scholar

[82] Chroneos A, Grimes R W, Bracht H. Impact of germanium on vacancy clustering in germanium-doped silicon. J Appl Phys, 2009, 105: 016102 CrossRef ADS Google Scholar

  • Table 1   Parameters of the primary thermal cycles involved in the DRAMfabrication
    Step Process Temperature ($^\circ$C) Duration (min) Gas ambient Oxygen behavior (Remarked)
    800$~\to~$1200 80 N$_{2}$
    1 Out-diffusion 1200 60 O$_{2}$ Oxygen out-diffusion
    1200$~\to~$800 80 N$_{2}$
    2 Nitride 760 360 N$_{2}$ Nucleation of
    deposition oxygen precipitates
    800$~\to~$1050 50 N$_{2}$ Growth of
    3 Linear oxidation 1050 60 O$_{2}$ oxygen precipitates
    1050$~\to~$800 50 N$_{2}$
    High density 800$~\to~$1050 50 N$_{2}$ Growth of
    4 plasma 1050 60 N$_{2}$ oxygen precipitates
    densification 1050$~\to~$800 50 N$_{2}$
    800$~\to~$1050 50 N$_{2}$ Growth of
    5 Sacrificial oxidation 1050 60 O$_{2}$ oxygen precipitates
    1050$~\to~$800 50 N$_{2}$
    800$~\to~$1000 40 N$_{2}$ Growth of
    6 Well drive-in 1000 60 N$_{2}$ oxygen precipitates
    1000$~\to~$800 40 N$_{2}$
  • Table 2   Statistical analysis on the warpage of CZ and GCZ wafers with asampling size of 300
    Statistical index CZ GCZ
    Mean warp ($\mu~$m) 15.9 11.6
    Standard deviation ($\mu~$m) 5.4 3.3