SCIENTIA SINICA Informationis, Volume 49 , Issue 4 : 385-404(2019) https://doi.org/10.1360/N112018-00110

Advances in energy harvesting from heartbeat using flexible smart devices: state-of-the-art review

More info
  • ReceivedMay 1, 2018
  • AcceptedMay 7, 2018
  • PublishedMar 1, 2019


Funded by




[1] Korpas D. Implantable Cardiac Devices Technology. New York: Springer, 2013. Google Scholar

[2] Landolina M, Curnis A, Morani G. Longevity of implantable cardioverter-defibrillators for cardiac resynchronization therapy in current clinical practice: an analysis according to influencing factors, device generation, and manufacturer.. Europace, 2015, 17: 1251-1258 CrossRef PubMed Google Scholar

[3] Shintaku H, Nakagawa T, Kitagawa D. Development of piezoelectric acoustic sensor with frequency selectivity for artificial cochlea. Senss Actuators A-Phys, 2010, 158: 183-192 CrossRef Google Scholar

[4] Bergenstal R M, Klonoff D C, Garg S K. Threshold-based insulin-pump interruption for reduction of hypoglycemia.. N Engl J Med, 2013, 369: 224-232 CrossRef PubMed Google Scholar

[5] Schachter S C, Saper C B. Vagus Nerve Stimulation. Epilepsia, 1998, 39: 677-686 CrossRef Google Scholar

[6] Heller A. Implanted Electrochemical Glucose Sensors for the Management of Diabetes. Annu Rev Biomed Eng, 1999, 1: 153-175 CrossRef Google Scholar

[7] LaVan D A, McGuire T, Langer R. Small-scale systems for in vivo drug delivery.. Nat Biotechnol, 2003, 21: 1184-1191 CrossRef PubMed Google Scholar

[8] Haddad S A P, Houben R P M, Serdijin W A. The evolution of pacemakers. IEEE Eng Med Biol Mag, 2006, 25: 38-48 CrossRef Google Scholar

[9] Mond H G, Proclemer A. The 11th world survey of cardiac pacing and implantable cardioverter-defibrillators: calendar year 2009--a World Society of Arrhythmia's project.. Pacing Clinical ElectroPhysiol, 2011, 34: 1013-1027 CrossRef PubMed Google Scholar

[10] Ohm O J, Danilovic D. Improvements in Pacemaker Energy Consumption and Functional Capability: Four Decades of Progress. Pacing Clin Electro, 1997, 20: 2-9 CrossRef Google Scholar

[11] Poole J E, Gleva M J, Mela T. Complication rates associated with pacemaker or implantable cardioverter-defibrillator generator replacements and upgrade procedures: results from the REPLACE registry.. Circulation, 2010, 122: 1553-1561 CrossRef PubMed Google Scholar

[12] Griffith M J, Mounsey J P, Bexton R S. Mechanical, but not infective, pacemaker erosion may be successfully managed by re-implantation of pacemakers.. Heart, 1994, 71: 202-205 CrossRef Google Scholar

[13] Kim K H, Lee K Y, Seo J S. Paper-based piezoelectric nanogenerators with high thermal stability.. Small, 2011, 7: 2577-2580 CrossRef PubMed Google Scholar

[14] Starner T. Human-powered wearable computing. IBM Syst J, 1996, 35: 618-629 CrossRef Google Scholar

[15] Kerzenmacher S, Ducrée J, Zengerle R. Energy harvesting by implantable abiotically catalyzed glucose fuel cells. J Power Sources, 2008, 182: 1-17 CrossRef ADS Google Scholar

[16] Jin Q, Shi W, Zhao Y. Cellulose Fiber-Based Hierarchical Porous Bismuth Telluride for High-Performance Flexible and Tailorable Thermoelectrics. ACS Appl Mater Interfaces, 2018, 10: 1743-1751 CrossRef Google Scholar

[17] H?sler E, Stein L, Harbauer G. Implantable physiological power supply with PVDF film. Ferroelectrics, 1984, 60: 277-282 CrossRef Google Scholar

[18] Zhang H, Zhang X S, Cheng X. A flexible and implantable piezoelectric generator harvesting energy from the pulsation of ascending aorta: in vitro and in vivo studies. Nano Energ, 2015, 12: 296-304 CrossRef Google Scholar

[19] Parsonnet V, Myers G H, Zucker I R, et al. A cardiac pacemaker using biologic energy sources. T Am Soc Art Int Org, 1963, 9: 174--177. Google Scholar

[20] Li Z, Zhu G, Yang R. Muscle-driven in vivo nanogenerator.. Adv Mater, 2010, 22: 2534-2537 CrossRef PubMed Google Scholar

[21] Owens B B. Batteries for Implantable Biomedical Devices. New York: Plenum Press, 1986. Google Scholar

[22] Silveira F, Flandre D. Low Power Analog CMOS for Cardiac Pacemakers. Berlin: Springer, 2004. Google Scholar

[23] Glynne-Jones P, Tudor M J, Beeby S P. An electromagnetic, vibration-powered generator for intelligent sensor systems. Senss Actuators A-Phys, 2004, 110: 344-349 CrossRef Google Scholar

[24] Roundy S J. Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion. Dissertation for Ph.D. Degree. Berkeley: University of California, Berkeley, 2003. Google Scholar

[25] Zhang H, Yang Y, Hou T C. Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energ, 2013, 2: 1019-1024 CrossRef Google Scholar

[26] Cheng X, Meng B, Zhang X. Wearable electrode-free triboelectric generator for harvesting biomechanical energy. Nano Energ, 2015, 12: 19-25 CrossRef Google Scholar

[27] Sirohi J, Mahadik R. Piezoelectric wind energy harvester for low-power sensors. J Intel Mat Syst Str, 2015, 22: 2215--2228. Google Scholar

[28] Deterre M, Boutaud B, Dalmolin R, et al. Energy harvesting system for cardiac implant applications. In: Porceedings of Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS (DTIP), 2011. 387--391. Google Scholar

[29] Karami M A, Inman D J. Analytical Modeling and Experimental Verification of the Vibrations of the Zigzag Microstructure for Energy Harvesting. J Vib Acoust, 2011, 133: 011002 CrossRef Google Scholar

[30] Ansari M H, Karami M A. Experimental investigation of fan-folded piezoelectric energy harvesters for powering pacemakers. Smart Mater Struct, 2017, 26: 065001 CrossRef PubMed ADS Google Scholar

[31] Amin Karami M, Inman D J. Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. Appl Phys Lett, 2012, 100: 042901 CrossRef ADS Google Scholar

[32] Tashiro R, Kabei N, Katayama K. Development of an electrostatic generator for a cardiac pacemaker that harnesses the ventricular wall motion. J Artificial Organs, 2002, 5: 239-245 CrossRef Google Scholar

[33] Goto H, Sugiura T, Harada Y. Feasibility of using the automatic generating system for quartz watches as a leadless pacemaker power source. Med Biol Eng Comput, 1999, 37: 377-380 CrossRef Google Scholar

[34] Zurbuchen A, Pfenniger A, Stahel A. Energy harvesting from the beating heart by a mass imbalance oscillation generator.. Ann Biomed Eng, 2013, 41: 131-141 CrossRef PubMed Google Scholar

[35] Pfenniger A, Jonsson M, Zurbuchen A. Energy harvesting from the cardiovascular system, or how to get a little help from yourself.. Ann Biomed Eng, 2013, 41: 2248-2263 CrossRef PubMed Google Scholar

[36] Garnier F, Hajlaoui R, Yassar A. All-Polymer Field-Effect Transistor Realized by Printing Techniques. Science, 1994, 265: 1684-1686 CrossRef PubMed ADS Google Scholar

[37] Bao Z, Feng Y, Dodabalapur A. High-Performance Plastic Transistors Fabricated by Printing Techniques. Chem Mater, 1997, 9: 1299-1301 CrossRef Google Scholar

[38] Feng X, Lu B W, Wu J, et al. Review on stretchable and flexible inorganic electronics. Acta Phys Sin, 2014, 63: 1--18. Google Scholar

[39] Rocha J G, Goncalves L M, Rocha P F. Energy Harvesting From Piezoelectric Materials Fully Integrated in Footwear. IEEE Trans Ind Electron, 2010, 57: 813-819 CrossRef Google Scholar

[40] Wang Z L. Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays. Science, 2006, 312: 242-246 CrossRef PubMed ADS Google Scholar

[41] Jung J H, Lee M, Hong J I. Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator.. ACS Nano, 2011, 5: 10041-10046 CrossRef PubMed Google Scholar

[42] Pantano A, M. Parks D, Boyce M C. Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids, 2004, 52: 789--821. Google Scholar

[43] Lipomi D J, Vosgueritchian M, Tee B C K. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat Nanotech, 2011, 6: 788-792 CrossRef PubMed ADS Google Scholar

[44] Zhang H, Xiang L, Yang Y. High-Performance Carbon Nanotube Complementary Electronics and Integrated Sensor Systems on Ultrathin Plastic Foil. ACS Nano, 2018, 12: 2773-2779 CrossRef Google Scholar

[45] Wang Z L, Yang R, Zhou J. Lateral nanowire/nanobelt based nanogenerators, piezotronics and piezo-phototronics. Mater Sci Eng-R-Rep, 2010, 70: 320-329 CrossRef Google Scholar

[46] Dagdeviren C, Yang B D, Su Y. Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm. Proc Natl Acad Sci USA, 2014, 111: 1927-1932 CrossRef PubMed ADS Google Scholar

[47] Cheng T, Zhang Y, Lai W Y. Stretchable Thin-Film Electrodes for Flexible Electronics with High Deformability and Stretchability.. Adv Mater, 2015, 27: 3349-3376 CrossRef PubMed Google Scholar

[48] Jiang H, Khang D Y, Song J. Finite deformation mechanics in buckled thin films on compliant supports. Proc Natl Acad Sci USA, 2007, 104: 15607-15612 CrossRef PubMed ADS Google Scholar

[49] Jiang H, Sun Y, Rogers J A, et al. Post-buckling analysis for the precisely controlled buckling of thin film encapsulated by elastomeric substrates. Int J Solids Struct, 2008, 45: 2014--2023. Google Scholar

[50] Kim D H, Song J, Choi W M. From the Cover: Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA, 2008, 105: 18675-18680 CrossRef PubMed ADS Google Scholar

[51] Ko H C, Shin G, Wang S. Curvilinear electronics formed using silicon membrane circuits and elastomeric transfer elements.. Small, 2009, 5: 2703-2709 CrossRef PubMed Google Scholar

[52] Zhang Y, Fu H, Su Y. Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater, 2013, 61: 7816-7827 CrossRef Google Scholar

[53] Fu H, Nan K, Bai W. Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat Mater, 2018, 17: 268-276 CrossRef PubMed ADS Google Scholar

[54] Lu B, Chen Y, Ou D. Ultra-flexible Piezoelectric Devices Integrated with Heart to Harvest the Biomechanical Energy. Sci Rep, 2015, 5: 16065 CrossRef PubMed ADS Google Scholar

[55] Jeong C K, Jae Hyun Han, Haribabu Palneedi, et al. Comprehensive biocompatibility of nontoxic and high-output flexible energy harvester using lead-free piezoceramic thin film. APL Mater, 2017, 5: 074102. Google Scholar

[56] Zhu G, Yang R, Wang S. Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array. Nano Lett, 2010, 10: 3151-3155 CrossRef PubMed ADS Google Scholar

[57] Wu W, Cheng L, Bai S. Electrospinning lead-free 0.5Ba(Zr0.2Ti0.8)O3-0.5(Ba0.7Ca0.3)TiO3 nanowires and their application in energy harvesting. J Mater Chem A, 2013, 1: 7332-7338 CrossRef Google Scholar

[58] Briscoe J, Jalali N, Woolliams P. Measurement techniques for piezoelectric nanogenerators. Energy Environ Sci, 2013, 6: 3035-3045 CrossRef Google Scholar

[59] Lu C, Wu S, Lu B, et al. Ultrathin flexible piezoelectric sensors for monitoring eye fatigue. J Micromech Microeng, 2017, 28, in press. Google Scholar

[60] Mohiuddin M M, Reichart B, Byrne G W. Current status of pig heart xenotransplantation.. Int J Surgery, 2015, 23: 234-239 CrossRef PubMed Google Scholar

[61] Zhang W, Wang L F, Rong T H, et al. Ultra-flexible energy harvester:in vivo testing on epicardium. J Med Res, 2015, 44: 29--33. Google Scholar

[62] Wang L F, Ma W G, Zhang W G, et al. Stretchability and flexibility of an ultra-flexible piezoelectric device: in vivo testing. J Med Res, 2016, 45: 31--36. Google Scholar

[63] Li Y, Song J, Fang B. Surface effects on the postbuckling of nanowires. J Phys D-Appl Phys, 2011, 44: 425304 CrossRef ADS arXiv Google Scholar

[64] Chen Y, Lu B W, Ou D P. Mechanics of flexible and stretchable piezoelectrics for energy harvesting. Sci China-Phys Mech Astron, 2015, 58: 594601 CrossRef ADS Google Scholar

[65] Su Y, Li S, Li R. Splitting of neutral mechanical plane of conformal, multilayer piezoelectric mechanical energy harvester. Appl Phys Lett, 2015, 107: 041905 CrossRef ADS Google Scholar

[66] Su Y, Dagdeviren C, Li R. Measured Output Voltages of Piezoelectric Devices Depend on the Resistance of Voltmeter. Adv Funct Mater, 2015, 25: 5320-5325 CrossRef Google Scholar

[67] Zhang Y, Chen Y, Lu B. Electromechanical Modeling of Energy Harvesting From the Motion of Left Ventricle in Closed Chest Environment. J Appl Mech, 2016, 83: 061007 CrossRef ADS Google Scholar

[68] Zhang Y, Lu B, Lü C. Theory of energy harvesting from heartbeat including the effects of pleural cavity and respiration. Proc R Soc A, 2017, 473: 20170615 CrossRef PubMed ADS Google Scholar

[69] Ding H J, Chen W Q. Three Dimensional Problems of Piezoelasticity. New York: Nova Science Publishers, 2001. Google Scholar

[70] Lallart M, Inman D J, Guyomar D. Transient Performance of Energy Harvesting Strategies under Constant Force Magnitude Excitation. J Intelligent Material Syst Struct, 2010, 21: 1279-1291 CrossRef Google Scholar

[71] Su Y, Li S, Huan Y. The universal and easy-to-use standard of voltage measurement for quantifying the performance of piezoelectric devices. Extreme Mech Lett, 2017, 15: 10-16 CrossRef Google Scholar

[72] Lang R M, Bierig M, Devereux R B. Recommendations for chamber quantification. J Am Soc Echocard, 2005, 18: 1440-1463 CrossRef PubMed Google Scholar

[73] Corsi C, Saracino G, Sarti A. Left ventricular volume estimation for real-time three-dimensional echocardiography.. IEEE Trans Med Imag, 2002, 21: 1202-1208 CrossRef PubMed Google Scholar

[74] Liedtke A J, Nellis S, Neely J R. Effects of excess free fatty acids on mechanical and metabolic function in normal and ischemic myocardium in swine.. Circ Res, 1978, 43: 652-661 CrossRef Google Scholar

[75] Heitman Jr. H, Hughes E H. The Effects of Air Temperature and Relative Humidity on the Physiological well being of Swine. J Animal Sci, 1949, 8: 171-181 CrossRef Google Scholar

[76] Bitzén U, Niklason L, G?ransson I. Measurement and mathematical modelling of elastic and resistive lung mechanical properties studied at sinusoidal expiratory flow.. Clinical Physiol Funct Imag, 2010, 30: 439-446 CrossRef PubMed Google Scholar

  • Table 1   Traditional heartbeat energy harvesters
    Ref. In vitro/ Energy Volume (cm$^{3})$ Mass (g) Output power Power density
    in vivo harvesting mechanism ($\mu$W) ($\mu$W/cm$^{3})$
    $[29]$ in vitro Piezoelectricity 1.2 11 10 8.3
    $[30]$ in vitro Piezoelectricity 2 20 15 7.5
    $[32]$ in vitro Electrostatic 75 36 0.48
    $[33]$ in vivo Electromagnetic 1 7 44 44
    $[34]$ in vivo Electromagnetic 0.5 3.7 16 32