References
[1]
Candes
E J,
Romberg
J,
Tao
T.
Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information.
IEEE Trans Inform Theor,
2006, 52: 489-509
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information&author=Candes E J&author=Romberg J&author=Tao T&publication_year=2006&journal=IEEE Trans Inform Theor&volume=52&pages=489-509
[2]
Donoho
D L.
Compressed sensing.
IEEE Trans Inform Theor,
2006, 52: 1289-1306
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Compressed sensing&author=Donoho D L&publication_year=2006&journal=IEEE Trans Inform Theor&volume=52&pages=1289-1306
[3]
Tropp
J A.
Just relax: convex programming methods for identifying sparse signals in noise.
IEEE Trans Inform Theor,
2006, 52: 1030-1051
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Just relax: convex programming methods for identifying sparse signals in noise&author=Tropp J A&publication_year=2006&journal=IEEE Trans Inform Theor&volume=52&pages=1030-1051
[4]
Zhang H, Wang Y, Chang X Y, et al. $L_{1/2}$ regularization. Sci China Inf Sci, 2010, 40: 412--422.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang H, Wang Y, Chang X Y, et al. $L_{1/2}$ regularization. Sci China Inf Sci, 2010, 40: 412--422&
[5]
Zhang H, Zhang H. Approximate message passing algorithm for $L_{1/2}$ regularization. Sci China Inf Sci, 2017, 47: 58--72.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang H, Zhang H. Approximate message passing algorithm for $L_{1/2}$ regularization. Sci China Inf Sci, 2017, 47: 58--72&
[6]
Chen
S S,
Donoho
D L,
Saunders
M A.
Atomic Decomposition by Basis Pursuit.
SIAM J Sci Comput,
1998, 20: 33-61
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Atomic Decomposition by Basis Pursuit&author=Chen S S&author=Donoho D L&author=Saunders M A&publication_year=1998&journal=SIAM J Sci Comput&volume=20&pages=33-61
[7]
Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol, 1996, 58: 267--288, doi: 10.2307/2346178.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B Stat Methodol, 1996, 58: 267--288, doi: 10.2307/2346178&
[8]
Meinshausen
N,
Bühlmann
P.
High-dimensional graphs and variable selection with the Lasso.
Ann Statist,
2006, 34: 1436-1462
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-dimensional graphs and variable selection with the Lasso&author=Meinshausen N&author=Bühlmann P&publication_year=2006&journal=Ann Statist&volume=34&pages=1436-1462
[9]
Grasmair
M,
Scherzer
O,
Haltmeier
M.
Necessary and sufficient conditions for linear convergence of $\ell^1$-regularization.
Comm Pure Appl Math,
2011, 64: 161-182
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Necessary and sufficient conditions for linear convergence of $\ell^1$-regularization&author=Grasmair M&author=Scherzer O&author=Haltmeier M&publication_year=2011&journal=Comm Pure Appl Math&volume=64&pages=161-182
[10]
Tropp
J A,
Wright
S J.
Computational Methods for Sparse Solution of Linear Inverse Problems.
Proc IEEE,
2010, 98: 948-958
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Computational Methods for Sparse Solution of Linear Inverse Problems&author=Tropp J A&author=Wright S J&publication_year=2010&journal=Proc IEEE&volume=98&pages=948-958
[11]
Rish I, Grabarnik G Y. Sparse Modeling: Theory, Algorithms, and Applications. Boca Raton: CRC Press, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rish I, Grabarnik G Y. Sparse Modeling: Theory, Algorithms, and Applications. Boca Raton: CRC Press, 2014&
[12]
Fan
J,
Li
R.
Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties.
J Am Statistical Association,
2001, 96: 1348-1360
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties&author=Fan J&author=Li R&publication_year=2001&journal=J Am Statistical Association&volume=96&pages=1348-1360
[13]
Zhang
C H,
Zhang
T.
A General Theory of Concave Regularization for High-Dimensional Sparse Estimation Problems.
Statist Sci,
2012, 27: 576-593
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A General Theory of Concave Regularization for High-Dimensional Sparse Estimation Problems&author=Zhang C H&author=Zhang T&publication_year=2012&journal=Statist Sci&volume=27&pages=576-593
[14]
Elsener A, Sara V. Sharp oracle inequalities for stationary points of nonconvex penalized M-estimators. 2018,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Elsener A, Sara V. Sharp oracle inequalities for stationary points of nonconvex penalized M-estimators. 2018,&
[15]
Zeng
J S,
Fang
J,
Xu
Z B.
Sparse SAR imaging based on L 1/2 regularization.
Sci China Inf Sci,
2012, 55: 1755-1775
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sparse SAR imaging based on L 1/2 regularization&author=Zeng J S&author=Fang J&author=Xu Z B&publication_year=2012&journal=Sci China Inf Sci&volume=55&pages=1755-1775
[16]
Zeng
J,
Xu
Z,
Zhang
B.
Accelerated regularization based SAR imaging via BCR and reduced Newton skills.
Signal Processing,
2013, 93: 1831-1844
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Accelerated regularization based SAR imaging via BCR and reduced Newton skills&author=Zeng J&author=Xu Z&author=Zhang B&publication_year=2013&journal=Signal Processing&volume=93&pages=1831-1844
[17]
Jinshan Zeng
,
Shaobo Lin
,
Yao Wang
.
$L_{1/2}$ Regularization: Convergence of Iterative Half Thresholding Algorithm.
IEEE Trans Signal Process,
2014, 62: 2317-2329
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=$L_{1/2}$ Regularization: Convergence of Iterative Half Thresholding Algorithm&author=Jinshan Zeng &author=Shaobo Lin &author=Yao Wang &publication_year=2014&journal=IEEE Trans Signal Process&volume=62&pages=2317-2329
[18]
Huang J, Jiao Y, Jin B, et al. A unified primal dual active set algorithm for nonconvex sparse recovery. 2018,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang J, Jiao Y, Jin B, et al. A unified primal dual active set algorithm for nonconvex sparse recovery. 2018,&
[19]
Fan J Q, Lv J C. A selective overview of variable selection in high dimensional feature space. Stat Sin, 2010, 20: 101--148.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fan J Q, Lv J C. A selective overview of variable selection in high dimensional feature space. Stat Sin, 2010, 20: 101--148&
[20]
Chang X Y, Xu Z B, Zhang H, et al. Robust regularization theory based on $L_{q}~(0Google Scholar
http://scholar.google.com/scholar_lookup?title=Chang X Y, Xu Z B, Zhang H, et al. Robust regularization theory based on $L_{q}~(0
[21]
Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell, 1984, 6: 721--741.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Geman S, Geman D. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans Pattern Anal Mach Intell, 1984, 6: 721--741&
[22]
Leclerc
Y G.
Constructing simple stable descriptions for image partitioning.
Int J Comput Vision,
1989, 3: 73-102
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Constructing simple stable descriptions for image partitioning&author=Leclerc Y G&publication_year=1989&journal=Int J Comput Vision&volume=3&pages=73-102
[23]
Ming Yan
,
Yi Yang
,
Osher
S.
Robust 1-bit Compressive Sensing Using Adaptive Outlier Pursuit.
IEEE Trans Signal Process,
2012, 60: 3868-3875
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Robust 1-bit Compressive Sensing Using Adaptive Outlier Pursuit&author=Ming Yan &author=Yi Yang &author=Osher S&publication_year=2012&journal=IEEE Trans Signal Process&volume=60&pages=3868-3875
[24]
Zhang
Y,
Dong
B,
Lu
Z.
$\ell~_0$ Minimization for wavelet frame based image restoration.
Math Comp,
2013, 82: 995-1015
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=$\ell~_0$ Minimization for wavelet frame based image restoration&author=Zhang Y&author=Dong B&author=Lu Z&publication_year=2013&journal=Math Comp&volume=82&pages=995-1015
[25]
Blumensath
T,
Davies
M E.
Iterative Thresholding for Sparse Approximations.
J Fourier Anal Appl,
2008, 14: 629-654
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Iterative Thresholding for Sparse Approximations&author=Blumensath T&author=Davies M E&publication_year=2008&journal=J Fourier Anal Appl&volume=14&pages=629-654
[26]
Lu
Z,
Zhang
Y.
Sparse Approximation via Penalty Decomposition Methods.
SIAM J Optim,
2013, 23: 2448-2478
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sparse Approximation via Penalty Decomposition Methods&author=Lu Z&author=Zhang Y&publication_year=2013&journal=SIAM J Optim&volume=23&pages=2448-2478
[27]
Tseng
P.
Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization.
J Optimization Theor Appl,
2001, 109: 475-494
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization&author=Tseng P&publication_year=2001&journal=J Optimization Theor Appl&volume=109&pages=475-494
[28]
Ito
K,
Kunisch
K.
A variational approach to sparsity optimization based on Lagrange multiplier theory.
Inverse Problems,
2014, 30: 015001
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=A variational approach to sparsity optimization based on Lagrange multiplier theory&author=Ito K&author=Kunisch K&publication_year=2014&journal=Inverse Problems&volume=30&pages=015001
[29]
Jiao Y, Jin B, Lu X. A primal dual active set algorithm for a class of nonconvex sparsity optimization. 2013,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jiao Y, Jin B, Lu X. A primal dual active set algorithm for a class of nonconvex sparsity optimization. 2013,&
[30]
Hale
E T,
Yin
W,
Zhang
Y.
Fixed-Point Continuation for $\ell_1$-Minimization: Methodology and Convergence.
SIAM J Optim,
2008, 19: 1107-1130
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fixed-Point Continuation for $\ell_1$-Minimization: Methodology and Convergence&author=Hale E T&author=Yin W&author=Zhang Y&publication_year=2008&journal=SIAM J Optim&volume=19&pages=1107-1130
[31]
Fan
Q,
Jiao
Y,
Lu
X.
A Primal Dual Active Set Algorithm With Continuation for Compressed Sensing.
IEEE Trans Signal Process,
2014, 62: 6276-6285
CrossRef
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Primal Dual Active Set Algorithm With Continuation for Compressed Sensing&author=Fan Q&author=Jiao Y&author=Lu X&publication_year=2014&journal=IEEE Trans Signal Process&volume=62&pages=6276-6285
[32]
Jiao
Y,
Jin
B,
Lu
X.
A primal dual active set with continuation algorithm for the $\ell^0$-regularized optimization problem.
Appl Comput Harmonic Anal,
2015, 39: 400-426
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A primal dual active set with continuation algorithm for the $\ell^0$-regularized optimization problem&author=Jiao Y&author=Jin B&author=Lu X&publication_year=2015&journal=Appl Comput Harmonic Anal&volume=39&pages=400-426
[33]
Proakis, J G, Manolakis, D G. Digital Signal Processing: Principles Algorithms and Applications. New Jersey: Prentice Hall, 1996.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Proakis, J G, Manolakis, D G. Digital Signal Processing: Principles Algorithms and Applications. New Jersey: Prentice Hall, 1996&
[34]
Candes
E J,
Tao
T.
Decoding by Linear Programming.
IEEE Trans Inform Theor,
2005, 51: 4203-4215
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Decoding by Linear Programming&author=Candes E J&author=Tao T&publication_year=2005&journal=IEEE Trans Inform Theor&volume=51&pages=4203-4215
[35]
Vershynin R. Introduction to the non-asymptotic analysis of random matrices. 2010,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vershynin R. Introduction to the non-asymptotic analysis of random matrices. 2010,&
[36]
Huang
S,
Zhu
J.
Recovery of sparse signals using OMP and its variants: convergence analysis based on RIP.
Inverse Problems,
2011, 27: 035003
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Recovery of sparse signals using OMP and its variants: convergence analysis based on RIP&author=Huang S&author=Zhu J&publication_year=2011&journal=Inverse Problems&volume=27&pages=035003
[37]
Mo
Q,
Shen
Y.
A Remark on the Restricted Isometry Property in Orthogonal Matching Pursuit.
IEEE Trans Inform Theor,
2012, 58: 3654-3656
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Remark on the Restricted Isometry Property in Orthogonal Matching Pursuit&author=Mo Q&author=Shen Y&publication_year=2012&journal=IEEE Trans Inform Theor&volume=58&pages=3654-3656
[38]
Ito K, Jin B. Inverse Problems: Tikhonov Theory and Algorithms. Singapore: World Scientific, 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ito K, Jin B. Inverse Problems: Tikhonov Theory and Algorithms. Singapore: World Scientific, 2014&
[39]
Schwarz
G.
Estimating the Dimension of a Model.
Ann Statist,
1978, 6: 461-464
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Estimating the Dimension of a Model&author=Schwarz G&publication_year=1978&journal=Ann Statist&volume=6&pages=461-464
[40]
Wang
H,
Li
R,
Tsai
C L.
Tuning parameter selectors for the smoothly clipped absolute deviation method..
Biometrika,
2007, 94: 553-568
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tuning parameter selectors for the smoothly clipped absolute deviation method.&author=Wang H&author=Li R&author=Tsai C L&publication_year=2007&journal=Biometrika&volume=94&pages=553-568
[41]
Chen
J,
Chen
Z.
Extended Bayesian information criteria for model selection with large model spaces.
Biometrika,
2008, 95: 759-771
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Extended Bayesian information criteria for model selection with large model spaces&author=Chen J&author=Chen Z&publication_year=2008&journal=Biometrika&volume=95&pages=759-771
[42]
Wang
H,
Li
B,
Leng
C.
Shrinkage tuning parameter selection with a diverging number of parameters.
J R Statistical Soc-Ser B (Statistical Methodology),
2009, 71: 671-683
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shrinkage tuning parameter selection with a diverging number of parameters&author=Wang H&author=Li B&author=Leng C&publication_year=2009&journal=J R Statistical Soc-Ser B (Statistical Methodology)&volume=71&pages=671-683
[43]
Wang
L,
Kim
Y,
Li
R.
Calibrating non-convex penalized regression in ultra-high dimension.
Ann Statist,
2013, 41: 2505-2536
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Calibrating non-convex penalized regression in ultra-high dimension&author=Wang L&author=Kim Y&author=Li R&publication_year=2013&journal=Ann Statist&volume=41&pages=2505-2536
[44]
Shi Y Y, Jiao Y L, Yan L, et al. A modified BIC tuning parameter selector for SICA-penalized Cox regression models with diverging dimensionality. J Math, 2017, 37: 723--730 [石跃勇, 焦雨领, 严良, 等. 发散维数 SICA 惩罚 Cox 回归模型的一种修正 BIC 调节参数选择器. 数学杂志, 2017, 37: 723--730].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shi Y Y, Jiao Y L, Yan L, et al. A modified BIC tuning parameter selector for SICA-penalized Cox regression models with diverging dimensionality. J Math, 2017, 37: 723--730 [石跃勇, 焦雨领, 严良, 等. 发散维数 SICA 惩罚 Cox 回归模型的一种修正 BIC 调节参数选择器. 数学杂志, 2017, 37: 723--730]&
[45]
Zou
H,
Hastie
T,
Tibshirani
R.
On the "degrees of freedom" of the lasso.
Ann Statist,
2007, 35: 2173-2192
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On the "degrees of freedom" of the lasso&author=Zou H&author=Hastie T&author=Tibshirani R&publication_year=2007&journal=Ann Statist&volume=35&pages=2173-2192
[46]
Becker
S,
Bobin
J,
Candès
E J.
NESTA: A Fast and Accurate First-Order Method for Sparse Recovery.
SIAM J Imag Sci,
2011, 4: 1-39
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=NESTA: A Fast and Accurate First-Order Method for Sparse Recovery&author=Becker S&author=Bobin J&author=Candès E J&publication_year=2011&journal=SIAM J Imag Sci&volume=4&pages=1-39
[47]
Blumensath
T,
Davies
M E.
Stagewise Weak Gradient Pursuits.
IEEE Trans Signal Process,
2009, 57: 4333-4346
CrossRef
ADS
Google Scholar
http://scholar.google.com/scholar_lookup?title=Stagewise Weak Gradient Pursuits&author=Blumensath T&author=Davies M E&publication_year=2009&journal=IEEE Trans Signal Process&volume=57&pages=4333-4346
[48]
Blumensath
T.
Accelerated iterative hard thresholding.
Signal Processing,
2012, 92: 752-756
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Accelerated iterative hard thresholding&author=Blumensath T&publication_year=2012&journal=Signal Processing&volume=92&pages=752-756