logo

SCIENTIA SINICA Informationis, Volume 48 , Issue 6 : 670-687(2018) https://doi.org/10.1360/N112018-00084

Transfer techniques for single-crystal silicon/germanium nanomembranes and their application in flexible electronics

More info
  • ReceivedApr 10, 2018
  • AcceptedApr 20, 2018
  • PublishedJun 12, 2018

Abstract


Funded by

国家自然科学基金(51322201)

国家自然科学基金(U1632115)

国家自然科学基金(51602056)


References

[1] Rogers J A, Lagally M G, Nuzzo R G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature, 2011, 477: 45-53 CrossRef PubMed ADS Google Scholar

[2] Langdo T A, Currie M T, Lochtefeld A. SiGe-free strained Si on insulator by wafer bonding and layer transfer. Appl Phys Lett, 2003, 82: 4256-4258 CrossRef ADS Google Scholar

[3] Hebard A F. Buckminsterfullerene. Annu Rev Mater Sci, 1993, 23: 159-191 CrossRef ADS Google Scholar

[4] Zhu J, Yu Z, Burkhard G F. Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays. Nano Lett, 2009, 9: 279-282 CrossRef PubMed ADS Google Scholar

[5] McEuen P L, Fuhrer M S, Hongkun Park M S. Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol, 2002, 1: 78-85 CrossRef ADS Google Scholar

[6] Sanders G D, Stanton C J, Chang Y C. Theory of transport in silicon quantum wires. Phys Rev B, 1993, 48: 11067-11076 CrossRef ADS Google Scholar

[7] Wang J. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science, 2001, 293: 1455-1457 CrossRef PubMed ADS Google Scholar

[8] Takagi S, Koga J, Toriumi A. Mobility Enhancement of SOI MOSFETs due to Subband Modulation in Ultrathin SOI Films. Jpn J Appl Phys, 1998, 37: 1289-1294 CrossRef ADS Google Scholar

[9] Chen F, Ramayya E B, Euaruksakul C. Quantum confinement, surface roughness, and the conduction band structure of ultrathin silicon membranes.. ACS Nano, 2010, 4: 2466-2474 CrossRef PubMed Google Scholar

[10] Feng P, Mo?nch I, Harazim S. Giant Persistent Photoconductivity in Rough Silicon Nanomembranes. Nano Lett, 2009, 9: 3453-3459 CrossRef PubMed ADS Google Scholar

[11] Yang H, Zhao D, Chuwongin S. Transfer-printed stacked nanomembrane lasers on silicon. Nat Photon, 2012, 6: 615-620 CrossRef ADS Google Scholar

[12] Varpula A, Timofeev A V, Shchepetov A. Thermoelectric thermal detectors based on ultra-thin heavily doped single-crystal silicon membranes. Appl Phys Lett, 2017, 110: 262101 CrossRef ADS Google Scholar

[13] Connelly D, Clifton P. Analysis of Schottky barriers to ultrathin strained Si. J Appl Phys, 2008, 103: 074506 CrossRef ADS Google Scholar

[14] Tsutsui G, Hiramoto T. Experimental Study on Mobility in (110)-Oriented Ultrathin-Body Silicon-on-Insulator n-Type Metal Oxide Semiconductor Field-Effect Transistor with Single- and Double-Gate Operations. Jpn J Appl Phys, 2007, 46: 5686-5690 CrossRef ADS Google Scholar

[15] Fischetti M V, Laux S E. Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J Appl Phys, 1996, 80: 2234-2252 CrossRef ADS Google Scholar

[16] Euaruksakul C, Li Z W, Zheng F. Influence of Strain on the Conduction Band Structure of Strained Silicon Nanomembranes. Phys Rev Lett, 2008, 101: 147403 CrossRef PubMed ADS Google Scholar

[17] Boztug C, Sánchez-Pérez J R, Cavallo F. Strained-germanium nanostructures for infrared photonics.. ACS Nano, 2014, 8: 3136-3151 CrossRef PubMed Google Scholar

[18] Greil J, Lugstein A, Zeiner C. Tuning the Electro-optical Properties of Germanium Nanowires by Tensile Strain. Nano Lett, 2012, 12: 6230-6234 CrossRef PubMed ADS Google Scholar

[19] Liu W, Asheghi M. Phonon-boundary scattering in ultrathin single-crystal silicon layers. Appl Phys Lett, 2004, 84: 3819-3821 CrossRef ADS Google Scholar

[20] Liu F, Huang M, Rugheimer P P. Nanostressors and the Nanomechanical Response of a Thin Silicon Film on an Insulator. Phys Rev Lett, 2002, 89: 136101 CrossRef PubMed ADS Google Scholar

[21] Zhang P, Tevaarwerk E, Park B N. Electronic transport in nanometre-scale silicon-on-insulator membranes. Nature, 2006, 439: 703-706 CrossRef PubMed ADS Google Scholar

[22] Northrup J E. Electronic structure of Si(100) c(4 x 2) calculated within the GW approximation. Phys Rev B, 1993, 47: 10032-10035 CrossRef ADS Google Scholar

[23] Seonghoon Jin , Fischetti M V, Ting-Wei Tang M V. Modeling of Surface-Roughness Scattering in Ultrathin-Body SOI MOSFETs. IEEE Trans Electron Devices, 2007, 54: 2191-2203 CrossRef ADS Google Scholar

[24] Kurokawa Y, Miyazaki H, Jimba Y. Light scattering from a monolayer of periodically arrayed dielectric spheres on dielectric substrates. Phys Rev B, 2002, 65: 201102 CrossRef ADS Google Scholar

[25] Dutta S, Patra A K, De S. Self-assembled TiO2 nanospheres by using a biopolymer as a template and its optoelectronic application.. ACS Appl Mater Interfaces, 2012, 4: 1560-1564 CrossRef PubMed Google Scholar

[26] Feng P, M?nch I, Huang G. Local-illuminated ultrathin silicon nanomembranes with photovoltaic effect and negative transconductance.. Adv Mater, 2010, 22: 3667-3671 CrossRef PubMed Google Scholar

[27] Feng P, Wu G, Schmidt O G. Photosensitive hole transport in Schottky-contacted Si nanomembranes. Appl Phys Lett, 2014, 105: 121101 CrossRef ADS Google Scholar

[28] Subbaraman H, Xu X, Lin C Y, et al. Silicon nanomembrane based photonic crystal waveguide true-time-delay lines on a glass substrate. In: Proceedings of Society of Photo-Optical Instrumentation Engineers, San Diego, 2013. 8629: 86291E. Google Scholar

[29] Xu X, Subbaraman H, Kwong D. Large area silicon nanomembrane photonic devices on unconventional substrates. IEEE Photon Technol Lett, 2013, 25: 1601-1604 CrossRef ADS Google Scholar

[30] Cho M, Seo J H, Kim M. Resonant cavity germanium photodetector via stacked single-crystalline nanomembranes. J Vacuum Sci Tech B Nanotechnol MicroElectron-Mater Processing Measurement Phenomena, 2016, 34: 040604 CrossRef Google Scholar

[31] Cho M, Seo J H, Lee J. Ultra-thin distributed Bragg reflectors via stacked single-crystal silicon nanomembranes. Appl Phys Lett, 2015, 106: 181107 CrossRef ADS Google Scholar

[32] Fujita M. Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals. Science, 2005, 308: 1296-1298 CrossRef PubMed ADS Google Scholar

[33] Shakoor A, Lo Savio R, Cardile P. Room temperature all-silicon photonic crystal nanocavity light emitting diode at sub-bandgap wavelengths. Laser Photonics Rev, 2013, 7: 114-121 CrossRef Google Scholar

[34] Qiang Z, Yang H, Chen L. Fano filters based on transferred silicon nanomembranes on plastic substrates. Appl Phys Lett, 2008, 93: 061106 CrossRef ADS Google Scholar

[35] Chen L, Qiang Z, Yang H. Polarization and angular dependent transmissions on transferred nanomembrane Fano filters. Opt Express, 2009, 17: 8396-8406 CrossRef ADS Google Scholar

[36] Zhao D, Yang H, Chuwongin S. Design of photonic crystal membrane-reflector-based VCSELs. IEEE Photonics J, 2012, 4: 2169-2175 CrossRef Google Scholar

[37] Zhao D, Ma Z, Zhou W. Field penetrations in photonic crystal Fano reflectors. Opt Express, 2010, 18: 14152-14158 CrossRef ADS Google Scholar

[38] Jang H, Lee W, Won S M. Quantum Confinement Effects in Transferrable Silicon Nanomembranes and Their Applications on Unusual Substrates. Nano Lett, 2013, 13: 5600-5607 CrossRef PubMed ADS Google Scholar

[39] Song E, Si W, Cao R. Schottky contact on ultra-thin silicon nanomembranes under light illumination. Nanotechnology, 2014, 25: 485201 CrossRef PubMed ADS Google Scholar

[40] Li G, Guo Q, Fang Y. Self-assembled dielectric microsphere as light concentrators for ultrathin-silicon-based photodetectors with broadband enhancement. Phys Status Solid A, 2017, 214: 1700295 CrossRef ADS Google Scholar

[41] Ishikawa T, Nikaido H, Usami K. Fabrication of Nanosilicon Ink and Two-Dimensional Array of Nanocrystalline Silicon Quantum Dots. Jpn J Appl Phys, 2010, 49: 125002-125004 CrossRef ADS Google Scholar

[42] Menon L, Yang H, Cho S J. Transferred Flexible Three-Color Silicon Membrane Photodetector Arrays. IEEE Photonics J, 2015, 7: 1-6 CrossRef Google Scholar

[43] Yoon J, Baca A J, Park S I. Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. Nat Mater, 2008, 7: 907-915 CrossRef PubMed ADS Google Scholar

[44] Lee S M, Biswas R, Li W. Printable nanostructured silicon solar cells for high-performance, large-area flexible photovoltaics.. ACS Nano, 2014, 8: 10507-10516 CrossRef PubMed Google Scholar

[45] Chávez-ángel E, Reparaz J S, Gomis-Bresco J. Reduction of the thermal conductivity in free-standing silicon nano-membranes investigated by non-invasive Raman thermometry. APL Mater, 2014, 2: 012113 CrossRef ADS Google Scholar

[46] Neogi S, Reparaz J S, Pereira L F C. Tuning thermal transport in ultrathin silicon membranes by surface nanoscale engineering.. ACS Nano, 2015, 9: 3820-3828 CrossRef PubMed Google Scholar

[47] Wang Z, Shi X, Tolbert L M. A High Temperature Silicon Carbide mosfet Power Module With Integrated Silicon-On-Insulator-Based Gate Drive. IEEE Trans Power Electron, 2015, 30: 1432-1445 CrossRef Google Scholar

[48] Roberts M M, Klein L J, Savage D E. Elastically relaxed free-standing strained-silicon nanomembranes. Nat Mater, 2006, 5: 388-393 CrossRef PubMed ADS Google Scholar

[49] Song E, Guo Q, Huang G. Bendable photodetector on Fibers Wrapped with Flexible Ultrathin Single Crystalline Silicon Nanomembranes. ACS Appl Mater Interfaces, 2017, 9: 12171-12175 CrossRef Google Scholar

[50] Song E, Fang H, Jin X. Thin, Transferred Layers of Silicon Dioxide and Silicon Nitride as Water and Ion Barriers for Implantable Flexible Electronic Systems. Adv Electron Mater, 2017, 3: 1700077 CrossRef Google Scholar

[51] Guo Q, Fang Y, Zhang M. Wrinkled Single-Crystalline Germanium Nanomembranes for Stretchable Photodetectors. IEEE Trans Electron Devices, 2017, 64: 1985-1990 CrossRef ADS Google Scholar

[52] Demeester P, Pollentier I, Dobbelaere P D. Epitaxial lift-off and its applications. Semicond Sci Technol, 1993, 8: 1124-1135 CrossRef ADS Google Scholar

[53] Li M J, Tandon P, Bookbinder D C. Ultra-Low Bending Loss Single-Mode Fiber for FTTH. J Lightwave Technol, 2009, 27: 376-382 CrossRef ADS Google Scholar

[54] Menard E, Lee K J, Khang D Y. A printable form of silicon for high performance thin film transistors on plastic substrates. Appl Phys Lett, 2004, 84: 5398-5400 CrossRef ADS Google Scholar

[55] Hsia K J, Huang Y, Menard E. Collapse of stamps for soft lithography due to interfacial adhesion. Appl Phys Lett, 2005, 86: 154106 CrossRef ADS Google Scholar

[56] Meitl M A, Zhu Z T, Kumar V. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater, 2006, 5: 33-38 CrossRef ADS Google Scholar

[57] Feng X, Meitl M A, Bowen A M. Competing fracture in kinetically controlled transfer printing.. Langmuir, 2007, 23: 12555-12560 CrossRef PubMed Google Scholar

[58] Carlson A, Kim-Lee H J, Wu J. Shear-enhanced adhesiveless transfer printing for use in deterministic materials assembly. Appl Phys Lett, 2011, 98: 264104 CrossRef ADS Google Scholar

[59] Kim S, Wu J, Carlson A. Microstructured elastomeric surfaces with reversible adhesion and examples of their use in deterministic assembly by transfer printing. Proc Natl Acad Sci USA, 2010, 107: 17095-17100 CrossRef PubMed ADS Google Scholar

[60] Saeidpourazar R, Li R, Li Y. Laser-Driven Micro Transfer Placement of Prefabricated Microstructures. J Microelectromech Syst, 2012, 21: 1049-1058 CrossRef Google Scholar

[61] Carlson A, Wang S, Elvikis P. Active, Programmable Elastomeric Surfaces with Tunable Adhesion for Deterministic Assembly by Transfer Printing. Adv Funct Mater, 2012, 22: 4476-4484 CrossRef Google Scholar

[62] Menard E, Nuzzo R G, Rogers J A. Bendable single crystal silicon thin film transistors formed by printing on plastic substrates. Appl Phys Lett, 2005, 86: 093507 CrossRef ADS Google Scholar

[63] Jong-Hyun Ahn , Hoon-Sik Kim , Keon Jae Lee . High-Speed Mechanically Flexible Single-Crystal Silicon Thin-Film Transistors on Plastic Substrates. IEEE Electron Device Lett, 2006, 27: 460-462 CrossRef ADS Google Scholar

[64] Kim D H, Ahn J H, Kim H S. Complementary Logic Gates and Ring Oscillators on Plastic Substrates by Use of Printed Ribbons of Single-Crystalline Silicon. IEEE Electron Device Lett, 2008, 29: 73-76 CrossRef ADS Google Scholar

[65] Yu K J, Kuzum D, Hwang S W. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat Mater, 2016, 15: 782-791 CrossRef PubMed ADS Google Scholar

[66] Zhang K, Jung Y H, Mikael S. Origami silicon optoelectronics for hemispherical electronic eye systems. Nat Commun, 2017, 8: 1782 CrossRef PubMed ADS Google Scholar

[67] Lee K J, Lee J, Hwang H. A printable form of single-crystalline gallium nitride for flexible optoelectronic systems.. Small, 2005, 1: 1164-1168 CrossRef PubMed Google Scholar

[68] Sun Y, Menard E, Rogers J A. Gigahertz operation in flexible transistors on plastic substrates. Appl Phys Lett, 2006, 88: 183509 CrossRef ADS Google Scholar

[69] Sun Y, Khang D Y, Hua F. Photolithographic Route to the Fabrication of Micro/Nanowires of III-V Semiconductors. Adv Funct Mater, 2005, 15: 30-40 CrossRef Google Scholar

[70] Xue M Q, Yang Y L, Cao T B. Well-Positioned Metallic Nanostructures Fabricated by Nanotransfer Edge Printing. Adv Mater, 2008, 20: 596-600 CrossRef Google Scholar

[71] Kraus T, Malaquin L, Schmid H. Nanoparticle printing with single-particle resolution. Nat Nanotech, 2007, 2: 570-576 CrossRef PubMed ADS Google Scholar

[72] Kim T H, Cho K S, Lee E K. Full-colour quantum dot displays fabricated by transfer printing. Nat Photon, 2011, 5: 176-182 CrossRef ADS Google Scholar

[73] Chen J H, Ishigami M, Jang C. Printed Graphene Circuits. Adv Mater, 2007, 19: 3623-3627 CrossRef Google Scholar

[74] Kang S J, Kocabas C, Kim H S. Printed Multilayer Superstructures of Aligned Single-Walled Carbon Nanotubes for Electronic Applications. Nano Lett, 2007, 7: 3343-3348 CrossRef PubMed ADS Google Scholar

[75] Liu S, Becerril H A, LeMieux M C. Direct Patterning of Organic-Thin-Film-Transistor Arrays via a "Dry-Taping" Approach. Adv Mater, 2009, 21: 1266-1270 CrossRef Google Scholar

[76] Khang D Y, Rogers J A, Lee H H. Mechanical Buckling: Mechanics, Metrology, and Stretchable Electronics. Adv Funct Mater, 2009, 19: 1526-1536 CrossRef Google Scholar

[77] Kim D H, Rogers J A. Stretchable Electronics: Materials Strategies and Devices. Adv Mater, 2008, 20: 4887-4892 CrossRef Google Scholar

[78] Xu S, Yan Z, Jang K I. Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science, 2015, 347: 154-159 CrossRef PubMed ADS Google Scholar

[79] Rogers J A, Someya T, Huang Y. Materials and Mechanics for Stretchable Electronics. Science, 2010, 327: 1603-1607 CrossRef PubMed ADS Google Scholar

[80] Smith D J. Clinopyroxene precursors to amphibole sponge in arc crust. Nat Commun, 2014, 5: 4329 CrossRef PubMed ADS Google Scholar

[81] Song Y M, Xie Y, Malyarchuk V. Digital cameras with designs inspired by the arthropod eye. Nature, 2013, 497: 95-99 CrossRef PubMed ADS Google Scholar

[82] Shahrjerdi D, Bedell S W. Extremely Flexible Nanoscale Ultrathin Body Silicon Integrated Circuits on Plastic. Nano Lett, 2013, 13: 315-320 CrossRef PubMed ADS Google Scholar

[83] Shahrjerdi D, Bedell S W, Bayram C. Ultralight High-Efficiency Flexible InGaP/(In)GaAs Tandem Solar Cells on Plastic. Adv Energy Mater, 2013, 3: 566-571 CrossRef Google Scholar

[84] Rojas J P, Torres Sevilla G A, Hussain M M. Can We Build a Truly High Performance Computer Which is Flexible and Transparent?. Sci Rep, 2013, 3: 2609 CrossRef PubMed ADS Google Scholar

[85] Ghoneim M T, Rojas J P, Young C D. Electrical Analysis of High Dielectric Constant Insulator and Metal Gate Metal Oxide Semiconductor Capacitors on Flexible Bulk Mono-Crystalline Silicon. IEEE Trans Rel, 2015, 64: 579-585 CrossRef Google Scholar

[86] Kao H, Yeh C S, Chen M T. Characterization and reliability of nMOSFETs on flexible substrates under mechanical strain. Micro Electron Reliability, 2012, 52: 999-1004 CrossRef Google Scholar

[87] Balde J W. Foldable flex and thinned silicon multichip packaging technology. In: Emerging Technology in Advanced Packaging Series. Berlin: Springer, 2003. Google Scholar

[88] Seok J, Sukam C P, Kim A T. Material removal model for chemical-mechanical polishing considering wafer flexibility and edge effects. Wear, 2004, 257: 496-508 CrossRef Google Scholar

[89] Wang S C, Yeh C F, Hsu C T. Fabricating Thin-Film Transistors on Plastic Substrates Using Spin Etching and Device Transfer. J Electrochem Soc, 2005, 152: G227 CrossRef Google Scholar

[90] Wang S, Weil B D, Li Y. Large-Area Free-Standing Ultrathin Single-Crystal Silicon as Processable Materials. Nano Lett, 2013, 13: 4393-4398 CrossRef PubMed ADS Google Scholar

[91] Torres Sevilla G A, Ghoneim M T, Fahad H. Flexible nanoscale high-performance FinFETs.. ACS Nano, 2014, 8: 9850-9856 CrossRef PubMed Google Scholar

[92] Fang H, Zhao J, Yu K J. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc Natl Acad Sci USA, 2016, 113: 11682-11687 CrossRef PubMed ADS Google Scholar

[93] Fang H, Yu K J, Gloschat C. Capacitively Coupled Arrays of Multiplexed Flexible Silicon Transistors for Long-Term Cardiac Electrophysiology.. Nat Biomed Eng, 2017, 1: 0038 CrossRef PubMed Google Scholar

[94] Song E, Lee Y K, Li R. Transferred, Ultrathin Oxide Bilayers as Biofluid Barriers for Flexible Electronic Implants. Adv Funct Mater, 2018, 28: 1702284 CrossRef Google Scholar

[95] Chang J K, Fang H, Bower C A. Materials and processing approaches for foundry-compatible transient electronics. Proc Natl Acad Sci USA, 2017, 114: E5522-E5529 CrossRef PubMed ADS Google Scholar

[96] Guo Q, Zhang M, Xue Z. Deterministic Assembly of Flexible Si/Ge Nanoribbons via Edge-Cutting Transfer and Printing for van der Waals Heterojunctions.. Small, 2015, 11: 4140-4148 CrossRef PubMed Google Scholar

[97] Chang J K, Chang H P, Guo Q. Biodegradable Electronic Systems in 3D, Heterogeneously Integrated Formats.. Adv Mater, 2018, 30: 1704955 CrossRef PubMed Google Scholar

[98] Jang S, Hwang E, Lee Y. Multifunctional Graphene Optoelectronic Devices Capable of Detecting and Storing Photonic Signals. Nano Lett, 2015, 15: 2542-2547 CrossRef PubMed ADS Google Scholar

[99] Sun T, Wang Y, Yu W. Small, 2017, 13: 1701881 CrossRef PubMed Google Scholar

[100] Kufer D, Lasanta T, Bernechea M. Interface Engineering in Hybrid Quantum Dot-2D Phototransistors. ACS Photonics, 2016, 3: 1324-1330 CrossRef Google Scholar

[101] Wang L, Meric I, Huang P Y. One-Dimensional Electrical Contact to a Two-Dimensional Material. Science, 2013, 342: 614-617 CrossRef PubMed ADS Google Scholar

[102] Foo C Y, Sumboja A, Tan D J H. Adv Energy Mater, 2014, 4: 1400236 CrossRef Google Scholar

[103] Fu K K, Wang Z, Dai J. Transient Electronics: Materials and Devices. Chem Mater, 2016, 28: 3527-3539 CrossRef Google Scholar

[104] Carlson A, Bowen A M, Huang Y. Transfer printing techniques for materials assembly and micro/nanodevice fabrication.. Adv Mater, 2012, 24: 5284-5318 CrossRef PubMed Google Scholar

[105] Sachid A B, Tosun M, Desai S B. Monolithic 3D CMOS Using Layered Semiconductors.. Adv Mater, 2016, 28: 2547-2554 CrossRef PubMed Google Scholar

[106] Zhu X, Lu J, Pan H. Reduction in Modulus of Suspended Sub-2 nm Single Crystalline Silicon Nanomembranes. Adv Mater Interfaces, 2017, 4: 1700529 CrossRef Google Scholar

[107] Harris K D, Elias A L, Chung H J. Flexible electronics under strain: a review of mechanical characterization and durability enhancement strategies. J Mater Sci, 2016, 51: 2771-2805 CrossRef ADS Google Scholar

[108] Hussain A M, Hussain M M. CMOS-Technology-Enabled Flexible and Stretchable Electronics for Internet of Everything Applications.. Adv Mater, 2016, 28: 4219-4249 CrossRef PubMed Google Scholar

[109] Asadirad M, Pouladi S, Shervin S. Numerical Simulation for Operation of Flexible Thin-Film Transistors With Bending. IEEE Electron Device Lett, 2017, 38: 217-220 CrossRef ADS Google Scholar

[110] Ghoneim M T, Kutbee A, Ghodsi Nasseri F. Mechanical anomaly impact on metal-oxide-semiconductor capacitors on flexible silicon fabric. Appl Phys Lett, 2014, 104: 234104 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) Unique properties and applications of nanomembranes. (a) Quantumconfinement effect in silicon nanomembrane leads to splitting of theconduction band valleys [9]@Copyright 2010 American Chemical Society. (b)$I_{\rm~DS}$-$V_{\rm~DS}$ properties of the rough Si nanomembrane in the dark andunder light illumination. The inset displays the atomic force microscope image of a rough silicon nanomembrane [10]@Copyright 2009 American Chemical Society. (c)Vertical-cavity surface-emitting laser device with stacked siliconnanomembranes and InGaAsP quantum well active layer [11]@Copyright 2012 Macmillan Publishers Limited. (d) Optical and sanning electron microscopy images ofthe Si nanomembrane thermal detectors [12]@Copyright 2018 AIP Publishing LLC

  • Figure 2

    (Color online) Transfer first, device-last process and typical applications.(a) Release and transfer nanomembrane in solution (wet process). (b) Transfernanomembrane by elastomeric stamp (dry process). (c) A metal grid with asilicon nanomembrane by wet process [48]@2016 Macmillan Publishers Ltd. (d) Asilicon nanomembrane covered on an optical fiber for leakage detection [49]@Copyright 2017 American Chemical Society. (e) Silicon nanomembrane field-effecttransistor fabricated with dry process [50]@Copyright 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.(f) Structure scheme and optical image of germanium nanomembrane wrinklephotodetectors [51]@Copyright 2016 IEEE

  • Figure 3

    (Color online) Nanomembrane device system. (a) Optical image of siliconnanomembrane electrocorticography system (left) and recorded brain wave of amouse (right) [65]@Copyright 2016 Macmillan Publishers Limited. (b) Schematic illustrationof silicon nanomembrane hemispherical electronic eye systems (left) and highresolution image acquired by this system matching the concave hemisphericalsurface of focal plane array [66]@Copyright 2017 The Authors

  • Figure 4

    (Color online) Device-first, transfer-last process and typical applications.(a) Thinning down process of flexible nanomembrane devices on wafer.(b) Optical image of flexible silicon nanomembrane field-effect transistorfabricated with device-first process. (c) Optical image of flexible siliconnanomembrane sensing system with 396 nodes for electrophysiological mapping [93]@Copyright 2017 Macmillan Publishers Limited, part of Springer Nature

  • Figure 5

    (Color online) 3D integrated nanomembranes and circuit system. (a) Si/Genanoribbons van der Waals heterojunctions and its electronic property.Inset, transmission electron microscope image [96]@Copyright 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. (b) 3D stacked silicon nanomembrane logic circuitsystem on thin sheet of poly(lactic-co-glycolic acid) [97]@Copyright 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim