国家自然科学基金重点项目(61433004)
国家自然科学基金(61573094)
中央高校基础科研业务费(N140402001)
附录
[1] Zhou X, Zeng R, Gao F. Development status and prospects of the Energy InternetDevelopment status and prospects of the Energy Internet. SSI, 2017, 47: 149-170 CrossRef Google Scholar
[2] Sun Q Y, Teng F, Zhang H G. Energy Internet and its key control issues. Act Autom Sin, 2017, 43: 176--194. Google Scholar
[3] Cao J W, Meng K, Wang J Y, et al. An energy Internet and energy routers. Sci Sin Inform, 2014, 44: 714--727. Google Scholar
[4] Huang R, Ye L, Liao H L. Microelectronics technologies in renewable energy Internet. Sci Sin Inform, 2014, 44: 728--742. Google Scholar
[5] Zha Y B, Zhang T, Huang Z, et al. Analysis of energy Internet key technologies. Sci Sin Inform, 2014, 44: 702--713. Google Scholar
[6] Ilic M D, Xie L, Khan U A. Modeling of Future Cyber-Physical Energy Systems for Distributed Sensing and Control. IEEE Trans Syst Man Cybern A, 2010, 40: 825-838 CrossRef Google Scholar
[7] Pasqualetti F, Dorfler F, Bullo F. Attack Detection and Identification in Cyber-Physical Systems. IEEE Trans Automat Contr, 2013, 58: 2715-2729 CrossRef Google Scholar
[8] Xin S, Guo Q, Sun H. Cyber-Physical Modeling and Cyber-Contingency Assessment of Hierarchical Control Systems. IEEE Trans Smart Grid, 2015, 6: 2375-2385 CrossRef Google Scholar
[9] Liu X J, Kong X B. Present situation and prospect of model predictive control application in complex power industrial process. Proc CSEE, 2013, 33: 79--85. Google Scholar
[10] Son S E, Lee S H, Choi D H. Improvement of Composite Load Modeling Based on Parameter Sensitivity and Dependency Analyses. IEEE Trans Power Syst, 2014, 29: 242-250 CrossRef ADS Google Scholar
[11] Kim J K, An K, Ma J. Fast and Reliable Estimation of Composite Load Model Parameters Using Analytical Similarity of Parameter Sensitivity. IEEE Trans Power Syst, 2016, 31: 663-671 CrossRef ADS Google Scholar
[12] Duquette J, Rowe A, Wild P. Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow. Appl Energy, 2016, 178: 383-393 CrossRef Google Scholar
[13] Ahmadian Behrooz H, Boozarjomehry R B. Modeling and state estimation for gas transmission networks. J Nat Gas Sci Eng, 2015, 22: 551-570 CrossRef Google Scholar
[14] Gupta S K, Kar K, Mishra S. Collaborative Energy and Thermal Comfort Management Through Distributed Consensus Algorithms. IEEE Trans Automat Sci Eng, 2015, 12: 1285-1296 CrossRef Google Scholar
[15] Binetti G, Davoudi A, Lewis F L. Distributed Consensus-Based Economic Dispatch With Transmission Losses. IEEE Trans Power Syst, 2014, 29: 1711-1720 CrossRef ADS Google Scholar
[16] Ci S, Li H J, Chen X, et al. The cornerstone of energy Internet: research and practice of distributed energy storage technology. Sci Sin Inform, 2014, 44: 762--773. Google Scholar
[17] Zhang H, Li Y, Gao D W. Distributed Optimal Energy Management for Energy Internet. IEEE Trans Ind Inf, 2017, 13: 3081-3097 CrossRef Google Scholar
[18] Meng Y, Li T, Zhang J F. Coordination Over Multi-Agent Networks With Unmeasurable States and Finite-Level Quantization. IEEE Trans Automat Contr, 2017, 62: 4647-4653 CrossRef Google Scholar
[19] Su W, Huang A Q. A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers. Appl Energy, 2014, 119: 341-350 CrossRef Google Scholar
[20] Honarvar Nazari M, Costello Z, Feizollahi M J. Distributed Frequency Control of Prosumer-Based Electric Energy Systems. IEEE Trans Power Syst, 2014, 29: 2934-2942 CrossRef ADS Google Scholar
[21] Wang Z, Zhang Q, Zhang J F. Distributed consensus over digital noisy channel through reliable communications. Sci Sin Inform, 2016, 46: 1648--1661. Google Scholar
[22] Stevanovic V D, Zivkovic B, Prica S. Prediction of thermal transients in district heating systems. Energy Convers Manage, 2009, 50: 2167-2173 CrossRef Google Scholar
[23] Choi S Y, Yoo K Y, Lee J B. Mathematical modeling and control of thermal plant in the district heating system of Korea. Appl Thermal Eng, 2010, 30: 2067-2072 CrossRef Google Scholar
[24] Jiang X S, Jing Z X, Li Y Z. Modelling and operation optimization of an integrated energy based direct district water-heating system. Energy, 2014, 64: 375-388 CrossRef Google Scholar
[25] Wang H, Wang H, Zhu T. A novel model for steam transportation considering drainage loss in pipeline networks. Appl Energy, 2017, 188: 178-189 CrossRef Google Scholar
[26] Liu C, Shahidehpour M, Wang J. Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow. Chaos, 2011, 21: 025102 CrossRef PubMed ADS Google Scholar
[27] Pambour K A, Bolado-Lavin R, Dijkema G P J. An integrated transient model for simulating the operation of natural gas transport systems. J Nat Gas Sci Eng, 2016, 28: 672-690 CrossRef Google Scholar
[28] King A C, Billingham J, Otto S R. Differential Equations: Linear, Nonlinear, Ordinary, Partial. New York: Cambridge University Press, 2003. 527--536. Google Scholar
[29] Cheah-Mane M, Sainz L, Liang J. Criterion for the Electrical Resonance Stability of Offshore Wind Power Plants Connected Through HVDC Links. IEEE Trans Power Syst, 2017, 32: 4579-4589 CrossRef ADS Google Scholar
Figure 1
(Color online) We-energy and energy Internet. (a) Schematic diagram of we-energy; (b) structure of energy Internet
Figure 2
(Color online) Schematic diagram of we-energy operation mode based on quaternary model
Figure 3
(Color online) We-energy simulation system
Figure 4
(Color online) The result of economic operation among 5 we-energies. (a) Output of we-energies; (b) distribution of electric energy; (c) distribution of thermal energy; (d) distribution of natural gas
Figure 5
(Color online) Coordination control of we-energy. (a) Variation in load; (b) output power of MT; (c) output power of PV and EB; (d) output of GS and ES; (e) output of we-energy
Figure 6
(Color online) Output contrast experiment of we-energy
${{\nu}_i}$ | ${\xi~_{i1,{\rm~e}}}$ | ${\xi~_{i2,{\rm~e}}}$ | ${\xi~_{i1,{\rm~h}}}$ | ${\xi~_{i2,{\rm~h}}}$ | ${\xi~_{i1,{\rm~g}}}$ | ${\xi~_{i2,{\rm~g}}}$ |
${{\rm~WE}_1}$ | 0.021 | 0.051 | 0.011 | 0.110 | 0.210 | 0.712 |
${{\rm~WE}_2}$ | 0.040 | 0.028 | 0.029 | 0.120 | 0.031 | 0.051 |
${{\rm~WE}_3}$ | 0.022 | 0.021 | 0.010 | 0.010 | 0.012 | 0.041 |
${{\rm~WE}_4}$ | 0.013 | 0.029 | 0.012 | 0.031 | 0.001 | 0.011 |
${{\rm~WE}_5}$ | 0.210 | 0.032 | 0.710 | 0.045 | 0.069 | 0.022 |
${E_{i,{\rm{load}}}}$ | $E_{i,{\rm~e}}^{{\rm{load}},\min~}$ | $E_{i,{\rm~e}}^{{\rm{load}},\max~}$ | $E_{i,{\rm~h}}^{{\rm{load}},\min~}$ | $E_{i,{\rm~h}}^{{\rm{load}},\max~}$ | $E_{i,{\rm~g}}^{{\rm{load}},\min~}$ | $E_{i,{\rm~g}}^{{\rm{load}},\max~}$ |
${{\rm~WE}_1}$ | $-$120 | $-$30 | $-$260 | $-$65 | $-$200 | $-$30 |
${{\rm~WE}_2}$ | $-$100 | $-$50 | $-$230 | $-$60 | $-$180 | $-$25 |
${{\rm~WE}_3}$ | $-$130 | $-$45 | $-$191 | $-$30 | $-$175 | $-$45 |
${{\rm~WE}_4}$ | $-$90 | 0 | $-$280 | $-$75 | $-$150 | $-$20 |
${{WE}_5}$ | $-$60 | $-$10 | $-$205 | $-$50 | $-$185 | $-$35 |
$\Delta~{E_{i,{\rm~line}}}$ | $\Delta~E_{i,{\rm~e}}^{\min~}$ | $\Delta~E_{i,{\rm~e}}^{\max~}$ | $\Delta~E_{i,{\rm~h}}^{\min~}$ | $\Delta~E_{i,{\rm~h}}^{\max~}$ | $\Delta~E_{i,{\rm~g}}^{\min~}$ | $\Delta~E_{i,{\rm~g}}^{\max~}$ |
${{\rm~WE}_1}$ | $-$120 | 120 | $-$250 | 250 | $-$265 | 0 |
${{\rm~WE}_2}$ | $-$150 | 150 | $-$225 | 225 | $-$225 | 0 |
${{\rm~WE}_3}$ | $-$240 | 240 | $-$170 | 170 | $-$250 | 0 |
${{\rm~WE}_4}$ | $-$260 | 260 | $-$280 | 280 | $-$230 | 0 |
${{\rm~WE}_5}$ | $-$135 | 135 | $-$200 | 200 | $-$265 | 0 |
$\Delta~{E_{i,{\rm{produce}}}}$ | $E_{i,{\rm~e}}^{\rm~PV,max}$ | $E_{i,{\rm~e}}^{\rm~EB,max}$ | $E_{i,{\rm~e}}^{\rm~MT,max}$ | $\xi~_{i,1}^{\rm~MT}$ | $\xi~_{i,2}^{\rm~MT}$ | $\xi~_{i,3}^{\rm~MT}$ |
${{\rm~WE}_1}$ | 90 | 85 | 50 | 1 | 0.178 | 247 |
${{\rm~WE}_2}$ | 105 | 90 | 65 | 1 | 0.115 | 130 |
${{\rm~WE}_3}$ | 85 | 75 | 45 | 1 | 0.137 | 185 |
${{\rm~WE}_4}$ | 80 | 150 | 60 | 1 | 0.125 | 159 |
${{\rm~WE}_5}$ | 100 | 100 | 55 | 1 | 0.202 | 225 |
Parameter | Value | Parameter | Value | Parameter | Value | Parameter | Value |
${L_1}$ | 20 mH | ${f_w}$ | 0.025 | ${v_{w,{\rm~{st}}}}$ | 1.4 m/s | ${f_{\rm~g}}$ | 0.005 |
${L_2}$ | 25 mH | ${D_w}$ | 1 m | ${T_{w,{\rm~i}}}$ | 90$^{\rm{o}}{\rm{C}}$ | ${D_{\rm~g}}$ | 0.8 m |
${R_1}$ | 1.2 $\Omega~$ | ${L_w}$ | 1000 m | ${T_{w,{\rm~{st}}}}$ | 75$^{\rm{o}}{\rm{C}}$ | ${L_{\rm~g}}$ | 1000 m |
${R_2}$ | 1.5 $\Omega~$ | ${c_b}$ | 532 | ${p_{w,{\rm~i}}}$ | 20 MPa | ${p_{\rm~{g,s}}}$ | 0.4 MPa |
${C}$ | 15 ${{\mu~}}F$ | ${c_w}$ | 4200 ${\rm{J}}{{\rm{/}}\rm{kg}\cdot^{\circ}}{\rm{C}}$ | ${p_{w,{\rm~{st}}}}$ | 18 MPa | ${p_{\rm~{g,st}}}$ | 0.38 MPa |
${{a}_w}$ | 1000 m/s | ${v_{w,{\rm~i}}}$ | 1.6 m/s | ${c_{\rm~g}}$ | 300 m/s |