logo

SCIENTIA SINICA Informationis, Volume 48 , Issue 10 : 1409-1429(2018) https://doi.org/10.1360/N112018-00077

Modeling and application of we-energy in energy Internet

More info
  • ReceivedJun 8, 2018
  • AcceptedJun 25, 2018
  • PublishedOct 16, 2018

Abstract


Funded by

国家自然科学基金重点项目(61433004)

国家自然科学基金(61573094)

中央高校基础科研业务费(N140402001)


Supplement

附录


References

[1] Zhou X, Zeng R, Gao F. Development status and prospects of the Energy InternetDevelopment status and prospects of the Energy Internet. SSI, 2017, 47: 149-170 CrossRef Google Scholar

[2] Sun Q Y, Teng F, Zhang H G. Energy Internet and its key control issues. Act Autom Sin, 2017, 43: 176--194. Google Scholar

[3] Cao J W, Meng K, Wang J Y, et al. An energy Internet and energy routers. Sci Sin Inform, 2014, 44: 714--727. Google Scholar

[4] Huang R, Ye L, Liao H L. Microelectronics technologies in renewable energy Internet. Sci Sin Inform, 2014, 44: 728--742. Google Scholar

[5] Zha Y B, Zhang T, Huang Z, et al. Analysis of energy Internet key technologies. Sci Sin Inform, 2014, 44: 702--713. Google Scholar

[6] Ilic M D, Xie L, Khan U A. Modeling of Future Cyber-Physical Energy Systems for Distributed Sensing and Control. IEEE Trans Syst Man Cybern A, 2010, 40: 825-838 CrossRef Google Scholar

[7] Pasqualetti F, Dorfler F, Bullo F. Attack Detection and Identification in Cyber-Physical Systems. IEEE Trans Automat Contr, 2013, 58: 2715-2729 CrossRef Google Scholar

[8] Xin S, Guo Q, Sun H. Cyber-Physical Modeling and Cyber-Contingency Assessment of Hierarchical Control Systems. IEEE Trans Smart Grid, 2015, 6: 2375-2385 CrossRef Google Scholar

[9] Liu X J, Kong X B. Present situation and prospect of model predictive control application in complex power industrial process. Proc CSEE, 2013, 33: 79--85. Google Scholar

[10] Son S E, Lee S H, Choi D H. Improvement of Composite Load Modeling Based on Parameter Sensitivity and Dependency Analyses. IEEE Trans Power Syst, 2014, 29: 242-250 CrossRef ADS Google Scholar

[11] Kim J K, An K, Ma J. Fast and Reliable Estimation of Composite Load Model Parameters Using Analytical Similarity of Parameter Sensitivity. IEEE Trans Power Syst, 2016, 31: 663-671 CrossRef ADS Google Scholar

[12] Duquette J, Rowe A, Wild P. Thermal performance of a steady state physical pipe model for simulating district heating grids with variable flow. Appl Energy, 2016, 178: 383-393 CrossRef Google Scholar

[13] Ahmadian Behrooz H, Boozarjomehry R B. Modeling and state estimation for gas transmission networks. J Nat Gas Sci Eng, 2015, 22: 551-570 CrossRef Google Scholar

[14] Gupta S K, Kar K, Mishra S. Collaborative Energy and Thermal Comfort Management Through Distributed Consensus Algorithms. IEEE Trans Automat Sci Eng, 2015, 12: 1285-1296 CrossRef Google Scholar

[15] Binetti G, Davoudi A, Lewis F L. Distributed Consensus-Based Economic Dispatch With Transmission Losses. IEEE Trans Power Syst, 2014, 29: 1711-1720 CrossRef ADS Google Scholar

[16] Ci S, Li H J, Chen X, et al. The cornerstone of energy Internet: research and practice of distributed energy storage technology. Sci Sin Inform, 2014, 44: 762--773. Google Scholar

[17] Zhang H, Li Y, Gao D W. Distributed Optimal Energy Management for Energy Internet. IEEE Trans Ind Inf, 2017, 13: 3081-3097 CrossRef Google Scholar

[18] Meng Y, Li T, Zhang J F. Coordination Over Multi-Agent Networks With Unmeasurable States and Finite-Level Quantization. IEEE Trans Automat Contr, 2017, 62: 4647-4653 CrossRef Google Scholar

[19] Su W, Huang A Q. A game theoretic framework for a next-generation retail electricity market with high penetration of distributed residential electricity suppliers. Appl Energy, 2014, 119: 341-350 CrossRef Google Scholar

[20] Honarvar Nazari M, Costello Z, Feizollahi M J. Distributed Frequency Control of Prosumer-Based Electric Energy Systems. IEEE Trans Power Syst, 2014, 29: 2934-2942 CrossRef ADS Google Scholar

[21] Wang Z, Zhang Q, Zhang J F. Distributed consensus over digital noisy channel through reliable communications. Sci Sin Inform, 2016, 46: 1648--1661. Google Scholar

[22] Stevanovic V D, Zivkovic B, Prica S. Prediction of thermal transients in district heating systems. Energy Convers Manage, 2009, 50: 2167-2173 CrossRef Google Scholar

[23] Choi S Y, Yoo K Y, Lee J B. Mathematical modeling and control of thermal plant in the district heating system of Korea. Appl Thermal Eng, 2010, 30: 2067-2072 CrossRef Google Scholar

[24] Jiang X S, Jing Z X, Li Y Z. Modelling and operation optimization of an integrated energy based direct district water-heating system. Energy, 2014, 64: 375-388 CrossRef Google Scholar

[25] Wang H, Wang H, Zhu T. A novel model for steam transportation considering drainage loss in pipeline networks. Appl Energy, 2017, 188: 178-189 CrossRef Google Scholar

[26] Liu C, Shahidehpour M, Wang J. Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow. Chaos, 2011, 21: 025102 CrossRef PubMed ADS Google Scholar

[27] Pambour K A, Bolado-Lavin R, Dijkema G P J. An integrated transient model for simulating the operation of natural gas transport systems. J Nat Gas Sci Eng, 2016, 28: 672-690 CrossRef Google Scholar

[28] King A C, Billingham J, Otto S R. Differential Equations: Linear, Nonlinear, Ordinary, Partial. New York: Cambridge University Press, 2003. 527--536. Google Scholar

[29] Cheah-Mane M, Sainz L, Liang J. Criterion for the Electrical Resonance Stability of Offshore Wind Power Plants Connected Through HVDC Links. IEEE Trans Power Syst, 2017, 32: 4579-4589 CrossRef ADS Google Scholar

  • Figure 1

    (Color online) We-energy and energy Internet. (a) Schematic diagram of we-energy; (b) structure of energy Internet

  • Figure 2

    (Color online) Schematic diagram of we-energy operation mode based on quaternary model

  • Figure 3

    (Color online) We-energy simulation system

  • Figure 4

    (Color online) The result of economic operation among 5 we-energies. (a) Output of we-energies; (b) distribution of electric energy; (c) distribution of thermal energy; (d) distribution of natural gas

  • Figure 5

    (Color online) Coordination control of we-energy. (a) Variation in load; (b) output power of MT; (c) output power of PV and EB; (d) output of GS and ES; (e) output of we-energy

  • Figure 6

    (Color online) Output contrast experiment of we-energy

  • Table 1   Simulation parameters of we-energy
    ${{\nu}_i}$ ${\xi~_{i1,{\rm~e}}}$ ${\xi~_{i2,{\rm~e}}}$ ${\xi~_{i1,{\rm~h}}}$ ${\xi~_{i2,{\rm~h}}}$ ${\xi~_{i1,{\rm~g}}}$ ${\xi~_{i2,{\rm~g}}}$
    ${{\rm~WE}_1}$ 0.021 0.051 0.011 0.110 0.210 0.712
    ${{\rm~WE}_2}$ 0.040 0.028 0.029 0.120 0.031 0.051
    ${{\rm~WE}_3}$ 0.022 0.021 0.010 0.010 0.012 0.041
    ${{\rm~WE}_4}$ 0.013 0.029 0.012 0.031 0.001 0.011
    ${{\rm~WE}_5}$ 0.210 0.032 0.710 0.045 0.069 0.022
    ${E_{i,{\rm{load}}}}$ $E_{i,{\rm~e}}^{{\rm{load}},\min~}$ $E_{i,{\rm~e}}^{{\rm{load}},\max~}$ $E_{i,{\rm~h}}^{{\rm{load}},\min~}$ $E_{i,{\rm~h}}^{{\rm{load}},\max~}$ $E_{i,{\rm~g}}^{{\rm{load}},\min~}$ $E_{i,{\rm~g}}^{{\rm{load}},\max~}$
    ${{\rm~WE}_1}$ $-$120 $-$30 $-$260 $-$65 $-$200 $-$30
    ${{\rm~WE}_2}$ $-$100 $-$50 $-$230 $-$60 $-$180 $-$25
    ${{\rm~WE}_3}$ $-$130 $-$45 $-$191 $-$30 $-$175 $-$45
    ${{\rm~WE}_4}$ $-$90 0 $-$280 $-$75 $-$150 $-$20
    ${{WE}_5}$ $-$60 $-$10 $-$205 $-$50 $-$185 $-$35
    $\Delta~{E_{i,{\rm~line}}}$ $\Delta~E_{i,{\rm~e}}^{\min~}$ $\Delta~E_{i,{\rm~e}}^{\max~}$ $\Delta~E_{i,{\rm~h}}^{\min~}$ $\Delta~E_{i,{\rm~h}}^{\max~}$ $\Delta~E_{i,{\rm~g}}^{\min~}$ $\Delta~E_{i,{\rm~g}}^{\max~}$
    ${{\rm~WE}_1}$ $-$120 120 $-$250 250 $-$265 0
    ${{\rm~WE}_2}$ $-$150 150 $-$225 225 $-$225 0
    ${{\rm~WE}_3}$ $-$240 240 $-$170 170 $-$250 0
    ${{\rm~WE}_4}$ $-$260 260 $-$280 280 $-$230 0
    ${{\rm~WE}_5}$ $-$135 135 $-$200 200 $-$265 0
    $\Delta~{E_{i,{\rm{produce}}}}$ $E_{i,{\rm~e}}^{\rm~PV,max}$ $E_{i,{\rm~e}}^{\rm~EB,max}$ $E_{i,{\rm~e}}^{\rm~MT,max}$ $\xi~_{i,1}^{\rm~MT}$ $\xi~_{i,2}^{\rm~MT}$ $\xi~_{i,3}^{\rm~MT}$
    ${{\rm~WE}_1}$ 90 85 50 1 0.178 247
    ${{\rm~WE}_2}$ 105 90 65 1 0.115 130
    ${{\rm~WE}_3}$ 85 75 45 1 0.137 185
    ${{\rm~WE}_4}$ 80 150 60 1 0.125 159
    ${{\rm~WE}_5}$ 100 100 55 1 0.202 225
  • Table 1   Parameters of we-energy
    Parameter Value Parameter Value Parameter Value Parameter Value
    ${L_1}$ 20 mH ${f_w}$ 0.025 ${v_{w,{\rm~{st}}}}$ 1.4 m/s ${f_{\rm~g}}$ 0.005
    ${L_2}$ 25 mH ${D_w}$ 1 m ${T_{w,{\rm~i}}}$ 90$^{\rm{o}}{\rm{C}}$ ${D_{\rm~g}}$ 0.8 m
    ${R_1}$ 1.2 $\Omega~$ ${L_w}$ 1000 m ${T_{w,{\rm~{st}}}}$ 75$^{\rm{o}}{\rm{C}}$ ${L_{\rm~g}}$ 1000 m
    ${R_2}$ 1.5 $\Omega~$ ${c_b}$ 532 ${p_{w,{\rm~i}}}$ 20 MPa ${p_{\rm~{g,s}}}$ 0.4 MPa
    ${C}$ 15 ${{\mu~}}F$ ${c_w}$ 4200 ${\rm{J}}{{\rm{/}}\rm{kg}\cdot^{\circ}}{\rm{C}}$ ${p_{w,{\rm~{st}}}}$ 18 MPa ${p_{\rm~{g,st}}}$ 0.38 MPa
    ${{a}_w}$ 1000 m/s ${v_{w,{\rm~i}}}$ 1.6 m/s ${c_{\rm~g}}$ 300 m/s