logo

SCIENTIA SINICA Informationis, Volume 48 , Issue 8 : 1102-1111(2018) https://doi.org/10.1360/N112018-00062

Thoughts on the development of novel network technology

More info
  • ReceivedMar 27, 2018
  • AcceptedApr 23, 2018
  • PublishedAug 3, 2018

Abstract


Funded by

国家自然科学基金创新研究群体项目(61521003)

国家高技术研究发展计划(863)(2015AA016102)

中国工程科技中长期发展战略研究项目(2016-ZCQ-04)

上海市科学技术委员会科研计划课题(16DZ1120503)

河南省科技攻关计划课题(162102210034)


Acknowledgment

本文在撰写过程中得到了项目组兰巨龙教授、伊鹏研究员、胡宇翔副研究员、张校辉博士、王鹏博士等同事的大力帮助和支持, 他们为本文提供了诸多十分有益的思路; 同时, 感谢刘韵洁院士、吴建平院士、尤肖虎教授、张宏科教授、程承旗教授、魏少军教授等为本文提供的宝贵建议.


References

[1] Wu J X, Lan J L, Cheng D N, et al. Novel Network Architecture. Beijing: Post Telecom Press, 2014. Google Scholar

[2] Rexford J, Dovrolis C. Future Internet architecture: clean-slate versus evolutionary research. Commun ACM, 2010, 53: 36--40. Google Scholar

[3] Wu J P, Li X, Liu Y. Research status and development trends of next-generation Internet architecture. ZTE Tech J, 2011, 17: 10--14. Google Scholar

[4] Quan W, Zhang H K. Future Internet architecture: research status, hot topics, and development practice. Sin Chin Inform, 2017, 47: 804--810. Google Scholar

[5] Pan J, Paul S, Jain R. A survey of the research on future internet architectures. IEEE Commun Mag, 2011, 49: 26--36. Google Scholar

[6] Huang T, Liu J, Huo R, et al. Survey of research on future network architectures. J Commun, 2014, 35: 184--197. Google Scholar

[7] Li L M. Future network architectures. ZTE Tech J, 2013, 19: 39--42. Google Scholar

[8] McKeown N, Anderson T, Balakrishnan H, et al. OpenFlow: enabling innovation in campus networks. ACM SIGCOMM Comput Commun Rev, 2008, 38: 69--74. Google Scholar

[9] Hakiri A, Gokhale A, Berthou P. Software-Defined Networking: Challenges and research opportunities for Future Internet. Comput Networks, 2014, 75: 453-471 CrossRef Google Scholar

[10] Han B, Gopalakrishnan V, Ji L S, et al. Network function virtualization: challenges and opportunities for innovations. IEEE Commun Mag, 2015, 53: 90--97. Google Scholar

[11] Mijumbi R, Serrat J, Gorricho J L, et al. Management and orchestration challenges in network functions virtualization. IEEE Commun Mag, 2016, 54: 98--105. Google Scholar

[12] Wang B Q, Wu J X. Development trends and associated countermeasures analysis for NGN. J Inf Eng Univ, 2009, 10: 1--6. Google Scholar

[13] Balasubramaniam S, Leibnitz K, Lio P, et al. Biological principles for future internet architecture design. IEEE Commun Mag, 2011, 49: 44--52. Google Scholar

[14] Ousterhout J K, Cherenson A R, Douglis F, et al. The sprite network operating system. Computer, 2002, 21: 23--36. Google Scholar

[15] Shen Q G, Yu Z W, Gong J. Review of next generation network architcture. J Commun, 2010, 31: 3--17. Google Scholar

[16] Ma M J, Sun F G, Zhai L G, et al. Security challenges facing our country and countermeasure recommendations under new network security threats. Telecommun Sci, 2014, 30: 8--12. Google Scholar

[17] Zhao H L, Feng M, Shi F. SDN, key trends of the future network evolution. Telecommun Sci, 2012, 28: 1--5. Google Scholar

[18] Lan J L, Mo H, Hu Y X. SDN architecture: research and practice. ZTE Tech J, 2013, 19: 11--15. Google Scholar

[19] Wood T, Ramakrishnan K K, Hwang J, et al. Toward a software-based network: integrating software defined networking and network function virtualization. IEEE Netw, 2015, 29: 36--41. Google Scholar

[20] Mijumbi R, Serrat J, Gorricho J L, et al. Network function virtualization: state-of-the-art and research challenges. IEEE Commun Surv Tut, 2017, 18: 236--262. Google Scholar

[21] Lan J L, Cheng D N, Hu Y X. Research on reconfigurable information communication basal network architecture. J Commun, 2014, 1: 128--139. Google Scholar

[22] Li S, Hu D, Fang W. Protocol Oblivious Forwarding (POF): Software-Defined Networking with Enhanced Programmability. IEEE Network, 2017, 31: 58-66 CrossRef Google Scholar

[23] Wu Z, Lu K, Wang X, et al. Alleviating network congestion for HPC clusters with fat-tree interconnection leveraging software-defined networking. In: Proceedings of International Conference on Systems & Informatics, Hangzhou, 2017. 808--813. Google Scholar

[24] Wang C, Li X, Chen Y. Service-Oriented Architecture on FPGA-Based MPSoC. IEEE Trans Parallel Distrib Syst, 2017, 28: 2993-3006 CrossRef Google Scholar

[25] Wen R H, Feng G, Tan W, et al. Protocol stack mapping of software defined protocol for next generation mobile networks. In: Proceedings of IEEE International Conference on Communications (ICC), Kuala Lumpur, 2016. 1--6. Google Scholar

[26] Liu Y, Wei S J. What is still missing in China for the development of artificial intelligence chips? Chin Integr Circ, 2017, 26: 20--23. Google Scholar

[27] Jacobson V, Smetters D K, Thornton J D, et al. Networking named content. Commun ACM, 2012, 55: 117--124. Google Scholar

[28] Ahlgren B, Dannewitz C, Imbrenda C, et al. A survey of information-centric networking. IEEE Commun Mag, 2012, 50: 26--36. Google Scholar

[29] Dong F, Cheng C, Guo S. Design and research on GeoIP. In: Proceedings of the 14th International Conference on Computer Supported Cooperation Work in Design, Fudan, 2010. 13--17. Google Scholar

[30] Zhang H, Quan W, Chao H C, et al. Smart identifier network: A collaborative architecture for the future Internet. IEEE Netw, 2016, 30: 46--51. Google Scholar

[31] Clark D D, Partridge C, Ramming J C, et al. A knowledge plane for the Internet. In: Proceedings of the 2003 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, Karlsruhe, 2003. 3--10. Google Scholar

[32] Mestres A, Rodrigueznatal A, Carner J, et al. Knowledge-defined networking. ACM SIGCOMM Comput Commun Rev, 2016, 47: 2--10. Google Scholar

[33] Wu J X. Introduction to Cyberspace Mimic Defense. Beijing: Science Press, 2017. Google Scholar

qqqq

Contact and support