国家重点基础研究发展计划(2015CB351900)
国家自然科学基金(11502009)
国家自然科学基金(11772030)
机械结构强度与振动国家重点实验室开放基金(SV2018-KF-13)
[1] Kim D H, Ghaffari R, Lu N. Flexible and stretchable electronics for biointegrated devices. Annu Rev Biomed Eng, 2012, 14: 113-128 CrossRef PubMed Google Scholar
[2] Kim H S, Brueckner E, Song J. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc Natl Acad Sci USA, 2011, 108: 10072-10077 CrossRef PubMed ADS Google Scholar
[3] Kim T I, Jung Y H, Song J. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small, 2012, 8: 1643-1649 CrossRef PubMed Google Scholar
[4] Kim R H, Tao H, Kim T I. Materials and designs for wirelessly powered implantable light-emitting systems. Small, 2012, 8: 2812-2818 CrossRef PubMed Google Scholar
[5] Kim T I, McCall J G, Jung Y H. Injectable, cellular-scale optoelectronics with applications for wireless optogenetics. Science, 2013, 340: 211-216 CrossRef PubMed ADS Google Scholar
[6] Kim D H, Lu N, Ma R. Epidermal electronics. Science, 2011, 333: 838-843 CrossRef PubMed ADS Google Scholar
[7] Xu S, Zhang Y, Cho J. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nat Commun, 2013, 4: 1543 CrossRef PubMed ADS Google Scholar
[8] Chen Y, Lu B, Chen Y H. Breathable and stretchable temperature sensors inspired by skin. Sci Rep, 2015, 5: 11505 CrossRef PubMed ADS Google Scholar
[9] Xu L, Gutbrod S R, Bonifas A P. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat Commun, 2014, 5: 3329 CrossRef PubMed ADS Google Scholar
[10] Huang Y, Li H C, Chen Y. Stretchable and flexible photonics/electronics devices and transfer printing. Sci Sin-Phys Mech Astron, 2016, 46: 044607 CrossRef ADS Google Scholar
[11] Khang D Y, Jiang H Q, Huang Y. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science, 2006, 311: 208-212 CrossRef PubMed ADS Google Scholar
[12] Ko H C, Stoykovich M P, Song J. A hemispherical electronic eye camera based on compressible silicon optoelectronics. Nature, 2008, 454: 748-753 CrossRef PubMed ADS Google Scholar
[13] Kim D H, Song J, Choi W M. Materials and noncoplanar mesh designs for integrated circuits with linear elastic responses to extreme mechanical deformations. Proc Natl Acad Sci USA, 2008, 105: 18675-18680 CrossRef PubMed ADS Google Scholar
[14] Zhang Y, Fu H, Su Y. Mechanics of ultra-stretchable self-similar serpentine interconnects. Acta Mater, 2013, 61: 7816-7827 CrossRef Google Scholar
[15] Jang K I, Li K, Chung H U. Self-assembled three dimensional network designs for soft electronics. Nat Commun, 2017, 8: 15894 CrossRef PubMed ADS Google Scholar
[16] Park S I, Xiong Y, Kim R H. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science, 2009, 325: 977-981 CrossRef PubMed ADS Google Scholar
[17] Lu C, Li Y, Song J. A thermal analysis of the operation of microscale, inorganic light-emitting diodes. Proc R Soc A-Math Phys Eng Sci, 2012, 468: 3215-3223 CrossRef ADS Google Scholar
[18] Li Y, Shi Y, Song J. Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation. J Appl Phys, 2013, 113: 144505 CrossRef ADS Google Scholar
[19] Li Y, Shi X, Song J. Thermal analysis of injectable, cellular-scale optoelectronics with pulsed power. Proc R Soc A-Math Phys Eng Sci, 2013, 469: 20130142 CrossRef ADS Google Scholar
[20] Cui Y, Li Y, Xing Y. Thermal design of rectangular microscale inorganic light-emitting diodes. Appl Thermal Eng, 2017, 122: 653-660 CrossRef Google Scholar
[21] Cui Y, Li Y, Xing Y. Three-dimensional thermal analysis of rectangular micro-scale inorganic light-emitting diodes integrated with human skin. Int J Thermal Sci, 2018, 127: 321-328 CrossRef Google Scholar
[22] Sun Y X, Ma J X, Liu S B, et al. Analytical solution of transient heat conduction in a bi-layered circular plate irradiated by laser pulse. Can J Phys, 2016, 95: 322--330. Google Scholar
Figure 1
(Color online) A schematic of (a) the $\mu~$-ILED structure; (b) the axisymmetric analytical model
Figure 2
The time variation of the temperature increase of $\mu~$-ILED (FEA: finite element analysis)
Figure 3
(Color online) The distribution of the steady-state temperature increase at theencapsulation/substrate interface. (a) Analytic; (b) FEA
Figure 4
The influence of the in-plane dimension ratio $R_{0}$/$R~$ on thesteady-state temperature increase of $\mu~$-ILED
Su8 | $\mu$-ILED | Hydrogel | |
Thickness ($\mu~$m) | 110 | 5 | 300 |
Radius (mm) | 5 | 0.5 | 5 |
Density (kg/m$^{3})$ | 1190 | 2329 | 1112 |
Conductivity (W/m/K) | 0.2 | 160 | 0.6 |
Specific heat (J/kg/K) | 1200 | 700 | 2375 |