SCIENTIA SINICA Informationis, Volume 48 , Issue 9 : 1183-1197(2018) https://doi.org/10.1360/N112018-00047

Establishment and in-orbit test of optical link in satellite-to-ground quantum communication

More info
  • ReceivedMar 7, 2018
  • AcceptedMar 27, 2018
  • PublishedSep 7, 2018


Funded by





[1] Wang J Y, Yang B, Liao S K. Direct and full-scale experimental verifications towards ground-satellite quantum key distribution. Nat Photon, 2013, 7: 387-393 CrossRef ADS arXiv Google Scholar

[2] Liao S K, Cai W Q, Liu W Y. Satellite-to-ground quantum key distribution. Nature, 2017, 549: 43-47 CrossRef PubMed ADS arXiv Google Scholar

[3] Yin J, Cao Y, Li Y H. Satellite-based entanglement distribution over 1200 kilometers. Science, 2017, 356: 1140-1144 CrossRef PubMed Google Scholar

[4] Ren J G, Xu P, Yong H L. Ground-to-satellite quantum teleportation. Nature, 2017, 549: 70-73 CrossRef PubMed ADS arXiv Google Scholar

[5] Toyoshima M, Arimoto Y. Ground-to-ETS-VI narrow laser beam transmission. Proc SPIE, 1996, 2699: 71--80. Google Scholar

[6] Toyoshima M, Reyes M, Alonso A, et al. Ground-to-satellite optical link tests between Japanese laser communications terminal and European geostationary satellite ARTEMIS. Proc SPIE, 2004, 5338: 1--15. Google Scholar

[7] Nielsen T T. In-orbit test result of an operational optical intersatellite link between ARTEMIS and SPOT4, SILEX. Proc SPIE, 2002, 4635: 1--15. Google Scholar

[8] Jono T, Takayama Y, Sodnik Z. OICETS on-orbit laser communication experiments. Proc SPIE, 2006, 6105: 13--23. Google Scholar

[9] Toyoshima M, Araki K. Far-field pattern measurement of an onboard laser transmitter by use of a space-to-ground optical link. Appl Opt, 1998, 37: 1720-1730 CrossRef ADS Google Scholar

[10] Bai S, Qiang J, Zhang L. Optimization of spatial acquisition systems for low-light-level robustness in space optical communications. Opt Lett, 2015, 40: 3750-3753 CrossRef ADS Google Scholar

[11] Yu S Y, Gao H D, Wang L S, et al. Multiple-axis pointing control in intersatellite optical communication. Laser Technol, 2002, 26: 114--116. Google Scholar

[12] Jono T, Toyoda M, Nakagawa K, et al. tracking, and pointing systems of OICETS for free space laser communications. Proc SPIE, 1999, 3692: 41--50. Google Scholar

[13] Ortiz G G, Lee S, Monacos S P, et al. Design and development of a robust ATP subsystem for the Altair UAV-to-ground lasercomm 2.5-Gbps demonstration. Proc SPIE, 2003, 4975: 103--114. Google Scholar

[14] Nielsen T T. Pointing, acquisition and tracking system for the free space laser communication system, SILEX. Proc SPIE, 1995, 2381: 194--205. Google Scholar

[15] Qian F. Research on the high precision ATP system in satellite-to-earth quantum communications. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2014. Google Scholar

[16] Manfred E, Holtz L, Tunbridge D, et al. In-orbit measurements of micro accelerations of ESA's communication satellite Olympus. Proc SPIE, 1990, 1218: 205--214. Google Scholar

[17] Rong J, Chen Y, Hu Y. Simulation study of optical propagation in turbulent atmosphere. Opt Commun Technol, 2003, 27: 44--46. Google Scholar

[18] Yang S J. Research of the effects of channels and its suppression methods in quantum key distribution. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2012. Google Scholar

[19] Liu L R. Laser communications in space I optical link and terminal technology. Chinese J Lasers, 2007, 34: 3--20. Google Scholar