logo

SCIENTIA SINICA Informationis, Volume 48 , Issue 9 : 1165-1182(2018) https://doi.org/10.1360/N112018-00044

Substrate integrated waveguide interconnects in high-speed electronic systems

More info
  • ReceivedMar 5, 2018
  • AcceptedApr 27, 2018
  • PublishedAug 20, 2018

Abstract


Funded by

上海市教育委员会科研创新计划(2017-01-07-00-02-E00059)

国家自然科学基金优秀青年科学基金(61522113)

国家自然科学基金面上基金(61771311)


References

[1] Shigeki F. Waveguide line. U.S. Patent 06-053711, 1994. Google Scholar

[2] Wu K. Integration and interconnect techniques of planar and nonplanar structures for microwave and millimeter-wave circuits-current status and future trend. In: Proceedings of Asia-Pacific Microwave Conference, Taipei, 2001. 411--415. Google Scholar

[3] Gatti F, Bozzi M, Perregrini L, et al. A novel substrate integrated coaxial line (SICL) for wide-band applications. In: Proceedings of European Microwave Conference, Manchester, 2006. 1614--1617. Google Scholar

[4] Ranjkesh N, Shahabadi M. Reduction of dielectric losses in substrate integrated waveguide. Electron Lett, 2006, 42: 1230-1231 CrossRef Google Scholar

[5] Isapour A, Kouki A B. Empty LTCC Integrated Waveguide with Compact Transitions for Ultra-low Loss Millimeter-wave Applications. IEEE Microw Wireless Compon Lett, 2017, 27: 144-146 CrossRef Google Scholar

[6] Liu B, Hong W, Tian L, et al. Half mode substrate integrated waveguide (HMSIW) multi-way power divider. In: Proceedings of Asia-Pacific Microwave Conference, Yokohama, 2006. 917--920. Google Scholar

[7] Grigoropoulos N, Sanz-Izquierdo B, Young P R. Substrate integrated folded waveguides (SIFW) and filters. IEEE Microw Wireless Compon Lett, 2005, 15: 829-831 CrossRef Google Scholar

[8] Cassivi Y, Perregrini L, Wu K, et al. Low-cost and high-Q millimeter-wave resonator using substrate integrated waveguide technique. In: Proceedings of the 32nd European Microwave Conference, Milan, 2002. 1--4. Google Scholar

[9] Deslandes D, Wu K. Millimeter-wave substrate integrated waveguide filters. In: Proceedings of Canadian Conference on Electrical and Computer Engineering, Toward a Caring and Humane Technology, Montreal, 2003. 3: 1917--1920. Google Scholar

[10] Che W Q, Yung E K, Wu K. Millimeter-wave ferrite phase shifter in substrate integrated waveguide (SIW). In: Proceedings of IEEE Antennas and Propagation Society International Symposium Digest, Columbus, 2003. 4: 887--890. Google Scholar

[11] Germain S, Deslandes D, Wu K. Development of substrate integrated waveguide power dividers. In: Proceedings of Canadian Conference on Electrical and Computer Engineering, Toward a Caring and Humane Technology, Montreal, 2003. 3: 1921--1924. Google Scholar

[12] Li Yan, Wei Hong, Guang Hua. Simulation and experiment on SIW slot array antennas. IEEE Microw Wireless Compon Lett, 2004, 14: 446-448 CrossRef Google Scholar

[13] D'Orazio W, Wu K, Helszajn J. A substrate integrated waveguide degree-2 circulator. IEEE Microw Wireless Compon Lett, 2004, 14: 207-209 CrossRef Google Scholar

[14] Suntives A, Abhari R. Experimental evaluation of high-speed data transmission in a waveguide-based interconnect. In: Proceedings of IEEE Electrical Performane of Electronic Packaging, Scottsdale, 2006. 269--272. Google Scholar

[15] Smith N, Abhari R. Dispersion-equalization techniques for substrate integrated waveguide interconnects. IEEE Trans Microw Theory Tech, 2010, 58: 3824--3831. Google Scholar

[16] Yuan X W, Li X C, Wang N, et al. High-speed data transmission system using half mode substrate integrated waveguide. In: Proceedings of 2014 IEEE Electrical Design of Advanced Packaging & Systems Symposium (EDAPS), Bangalore, 2014. 105--108. Google Scholar

[17] Yuan X W, Li X C, Yuan B, et al. High-speed data transmission system based on half mode substrate integrated waveguide. J Microw, 2015, 31: 41--45. Google Scholar

[18] Shahidzadeh Mahani M, Roberts G W. A mmWave Folded Substrate Integrated Waveguide in a 130-nm CMOS Process. IEEE Trans Microwave Theor Techn, 2017, 65: 2775-2788 CrossRef ADS Google Scholar

[19] Wang N, Li X C, Yuan X W, et al. High-speed data transmission system based on QPSK scheme in substrate integrated waveguide. In: Proceedings of IEEE Electrical Design of Advanced Packaging & Systems Symposium (EDAPS), Bangalore, 2014. 117--120. Google Scholar

[20] Wang N, Li X C, Mao J F. High-speed interconnect system using QPSK scheme based on substrate integrated waveguide. J Circuits Syst Comput, 2018, 27: 1--19. Google Scholar

[21] Shen L M, Li X C, Mao J F. A 16-ary quadrature amplitude modulation high-speed transmission system based on substrate-integrated waveguide interconnection. J Shanghai Jiaotong Univ, 2014, 48: 1368--1371. Google Scholar

[22] Bensalem B, Aberle J T. A New High-Speed Memory Interconnect Architecture Using Microwave Interconnects and Multicarrier Signaling. IEEE Trans Compon Packag Manufact Technol, 2014, 4: 332-340 CrossRef Google Scholar

[23] Wei X, Li X C, Wang N, et al. A wide band millimeter-wave substrate integrated coaxial line (SICL) for high speed data transmission. In: Proceedings of Asia-Pacific Microwave Conference, Nanjing, 2015. 1--3. Google Scholar

[24] Wei X, Li X C, Shao Y, et al. A new double L-type integrated coaxial interconnect array. J Microw, 2016, 8: 59--64. Google Scholar

[25] Shao Y, Li X C, Wu L S. A Wideband Millimeter-Wave Substrate Integrated Coaxial Line Array for High-Speed Data Transmission. IEEE Trans Microwave Theor Techn, 2017, 65: 2789-2800 CrossRef ADS Google Scholar

[26] Suntives A, Abhari R. Dual-mode high-speed data transmission using substrate integrated waveguide interconnects. In: Proceedings of the 16th IEEE Electrical Performance of Electronic Packaging, Atlanta, 2007. 215--218. Google Scholar

[27] Mahani M S, Abhari R. Experimental evaluation of flexible high-speed interconnect system using substrate integrated waveguide technology. Electron Lett, 2012, 48: 1500-1501 CrossRef Google Scholar

[28] Suntives A, Abhari R. Ultra-High-Speed Multichannel Data Transmission Using Hybrid Substrate Integrated Waveguides. IEEE Trans Microwave Theor Techn, 2008, 56: 1973-1984 CrossRef ADS Google Scholar

[29] Suntives A, Abhari R. Design and Application of Multimode Substrate Integrated Waveguides in Parallel Multichannel Signaling Systems. IEEE Trans Microwave Theor Techn, 2009, 57: 1563-1571 CrossRef ADS Google Scholar

[30] Guo J, Djerafi T, Wu K. Mode Composite Waveguide. IEEE Trans Microwave Theor Techn, 2016, 64: 3187-3197 CrossRef ADS Google Scholar

[31] Fesharaki F, Djerafi T, Chaker M. Low-Loss and Low-Dispersion Transmission Line Over DC-to-THz Spectrum. IEEE Trans THz Sci Technol, 2016, 6: 611-618 CrossRef ADS Google Scholar

[32] Yang T H, Chen C F, Huang T Y, et al. A 60GHz LTCC transition between microstrip line and substrate integrated waveguide. In: Proceedings of Asia-Pacific Microwave Conference, Suzhou, 2005. 1: 1--3. Google Scholar

[33] Nam H, Yun T S, Kim K B, et al. Ku-band transition between microstrip and substrate integrated waveguide (SIW). In: Proceedings of Asia-Pacific Microwave Conference, Suzhou, 2005. 1: 1--4. Google Scholar

[34] Ding Y, Wu K. Substrate Integrated Waveguide-to-Microstrip Transition in Multilayer Substrate. IEEE Trans Microwave Theor Techn, 2007, 55: 2839-2844 CrossRef ADS Google Scholar

[35] Sanchez J E, Ayala V G. A general EM-based design procedure for single-layer substrate integrated waveguide interconnects with microstrip transitions. In: Proceedings of IEEE MTT-S International Microwave Symposium Digest, Atlanta, 2008. 983--986. Google Scholar

[36] Esteban H, Belenguer A, Sanchez J R. Improved Low Reflection Transition From Microstrip Line to Empty Substrate-Integrated Waveguide. IEEE Microw Wireless Compon Lett, 2017, 27: 685-687 CrossRef Google Scholar

[37] Suntives A, Abhari R. Transition structures for 3-D integration of substrate integrated waveguide interconnects. IEEE Microw Wireless Compon Lett, 2007, 17: 697-699 CrossRef Google Scholar

[38] Patrovsky A, Daigle M, Wu K. Millimeter-wave wideband transition from CPW to substrate integrated waveguide on electrically thick high-permittivity substrates. In: Proceedings of European Microwave Conference, Manchester, 2007. 138--141. Google Scholar

[39] Lee S, Jung S, Lee H Y. Ultra-Wideband CPW-to-Substrate Integrated Waveguide Transition Using an Elevated-CPW Section. IEEE Microw Wireless Compon Lett, 2008, 18: 746-748 CrossRef Google Scholar

[40] Wei X, Li X C, Wang N, et al. A wide band millimeter-wave substrate integrated coaxial line (SICL) for high speed data transmission. In: Proceedings of Asia-Pacific Microwave Conference, Nanjing, 2015. 3: 1--3. Google Scholar

[41] Belenguer A, Borja A L, Esteban H. High-Performance Coplanar Waveguide to Empty Substrate Integrated Coaxial Line Transition. IEEE Trans Microwave Theor Techn, 2015, 63: 4027-4034 CrossRef ADS Google Scholar

[42] Cassivi Y, Perregrini L, Arcioni P. Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microw Wireless Compon Lett, 2002, 12: 333-335 CrossRef Google Scholar

[43] Bozzi M, Perregrini L, Wu K. Direct determination of multi-mode equivalent circuit models for discontinuities in substrate integrated waveguide technology. In: Proceedings of IEEE MTT-S International Microwave Symposium Digest, San Francisco, 2006. 68--71. Google Scholar

[44] Bozzi M, Perregrini L, Wu K. Modeling of radiation, conductor, and dielectric losses in SIW components by the BI-RME method. In: Proceedings of European Microwave Integrated Circuit Conference, Amsterdam, 2008. 230--233. Google Scholar

[45] Feng Xu , Yulin Zhang , Wei Hong . Finite-difference frequency-domain algorithm for modeling guided-wave properties of substrate integrated waveguide. IEEE Trans Microwave Theor Techn, 2003, 51: 2221-2227 CrossRef ADS Google Scholar

[46] Xu F, Wu K. Numerical multimode calibration technique for extraction of complex propagation constants of substrate integrated waveguide. In: Proceedings of IEEE MTT-S International Microwave Symposium Digest, Texas, 2004. 2: 1229--1232. Google Scholar

[47] Feng Xu , Ke Wu . Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans Microwave Theor Techn, 2005, 53: 66-73 CrossRef ADS Google Scholar

[48] Yan L, Hong W, Wu K. Investigations on the propagation characteristics of the substrate integrated waveguide based on the method of lines. IEE Proc Microw Antennas Propag, 2005, 152: 35-42 CrossRef Google Scholar

[49] Deslandes D, Ke Wu D. Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide. IEEE Trans Microwave Theor Techn, 2006, 54: 2516-2526 CrossRef ADS Google Scholar

[50] Feng Xu , Ke Wu , Wei Hong . Domain decomposition FDTD algorithm combined with numerical TL calibration technique and its application in parameter extraction of substrate integrated circuits. IEEE Trans Microwave Theor Techn, 2006, 54: 329-338 CrossRef ADS Google Scholar

[51] Wang D, Chow Y L, Deng K. Analytical equivalence between substrate-integrated waveguide and rectangular waveguide. IET Microwaves Antennas Propagation, 2008, 2: 35-41 CrossRef Google Scholar

[52] Salehi M, Mehrshahi E. A Closed-Form Formula for Dispersion Characteristics of Fundamental SIW Mode. IEEE Microw Wireless Compon Lett, 2011, 21: 4-6 CrossRef Google Scholar

[53] Ranjkesh N, Shahabadi M, Busuioc D. Effect of dielectric losses on the propagation characteristics of the substrate integrated waveguide. In: Proceedings of Asia-Pacific Microwave Conference, Suzhou, 2005. 3: 1--4. Google Scholar

[54] Yu Jian Cheng , Ke Wu , Wei Hong . Power Handling Capability of Substrate Integrated Waveguide Interconnects and Related Transmission Line Systems. IEEE Trans Adv Packag, 2008, 31: 900-909 CrossRef Google Scholar

[55] Gabriela M J, Svetlana C, Reydezel T T. Modeling and parameter extraction for the metal surface roughness loss effect on substrate integrated waveguides from S-Parameters. IEEE Trans Microw Theory Tech, 2018, 66: 975--882. Google Scholar

[56] Kim J Y, Chun D W, Lee H Y. Efficient Modeling and Analysis of the Multiple Air Hole Effect in Substrate-Integrated Waveguide. IEEE Microw Wireless Compon Lett, 2018, 28: 93-95 CrossRef Google Scholar

[57] Suntives A, Abhari R. Design and characterization of the EBG waveguide-based interconnects. IEEE Trans Adv Packag, 2007, 30: 163--170. Google Scholar

[58] Scogna A C, Orlandi A. Systematic analysis of the signal integrity performance of surface integrated waveguide structures (SIWs). In: Proceedings of IEEE International Symposium on Electromagnetic Compatibility, Florida, 2010. 784--789. Google Scholar

[59] Hong W, Liu B, Wang Y, et al. Half mode substrate integrated waveguide: a new guided wave structure for microwave and millimeterwave application. In: Proceedings of International Conference Infrared and Millimeter Waves, Shanghai, 2006. 219--219. Google Scholar

[60] Zheng Liu , Lei Zhu , Gaobiao Xiao . An Effective Approach to Deembed the Complex Propagation Constant of Half-Mode SIW and Its Application. IEEE Trans Compon Packag Manufact Technol, 2016, 6: 109-116 CrossRef Google Scholar

[61] Lai Q, Fumeaux C, Hong W, et al. Characterization of the propagation properties of the half-mode substrate integrated waveguide. IEEE Trans Microw Theory Tech, 2009, 8: 1996--2004. Google Scholar

[62] Ma W, Wu K, Hong W, et al. Investigations on half-mode substrate integrated waveguide for high-speed interconnect application. In: Proceedings of IEEE MTT-S International Microwave Workshop Series on Art of Miniaturizing RF and Microwave Passive Components, Chengdu, 2008. 120--123. Google Scholar

[63] Che W, Geng L, Deng K. Analysis and Experiments of Compact Folded Substrate-Integrated Waveguide. IEEE Trans Microwave Theor Techn, 2008, 56: 88-93 CrossRef ADS Google Scholar

[64] Wu Q, Wei W, Wang H, et al. Approximate SICL synthesis method. In: Proceedings of Asia-Pacific Microwave Conference, Nanjing, 2015. 1: 1--322. Google Scholar

[65] Mao J F, Tang M. Interconnects in High-Speed Integrated Circuits. Beijing: Science Press, 2017. 220--221. Google Scholar