SCIENTIA SINICA Informationis, Volume 48 , Issue 5 : 521-530(2018) https://doi.org/10.1360/N112018-00029

Label distribution learning and label enhancement

Xin GENG 1,2,*, Ning XU 1,2
More info
  • ReceivedFeb 6, 2018
  • AcceptedApr 11, 2018
  • PublishedMay 11, 2018


Funded by





[1] Tsoumakas G, Katakis I. Multi-label classification: an overview. Int J Data Warehousing Min, 2007, 3: 1-13 CrossRef Google Scholar

[2] Geng X, Luo L. Multilabel ranking with inconsistent rankers. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, Columbus, 2014. 3742--3747. Google Scholar

[3] Zhou Y, Xue H, Geng X. Emotion distribution recognition from facial expressions. In: Proceedings of the 23rd ACM International Conference on Multimedia, Brisbane, 2015. 1247--1250. Google Scholar

[4] Geng X. Label distribution learning. IEEE Trans Knowl Data Eng, 2016, 28: 1734-1748 CrossRef Google Scholar

[5] Zhou W J, Yu Y, Zhang M L. Binary linear compression for multi-label classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, 2017. 3546--3552. Google Scholar

[6] Gao B B, Xing C, Xie C W. Deep label distribution learning with label ambiguity. IEEE Trans Image Process, 2017, 26: 2825-2838 CrossRef PubMed ADS arXiv Google Scholar

[7] Wu T F, Lin C J, Weng R C. Probability estimates for multiclass classification by pairwise coupling. J Mach Learn Res, 2004, 5: 975--1005. Google Scholar

[8] Lin H T, Lin C J, Weng R C. A note on Platt's probabilistic outputs for support vector machines. Mach Learn, 2007, 68: 267-276 CrossRef Google Scholar

[9] Berger A L, Pietra S D, Pietra V J D. A maximum entropy approach to natural language processing. Comput Linguist, 1996, 22: 39--71. Google Scholar

[10] Pietra S D, Pietra V D, Lafferty J D. Inducing features of random fields. IEEE Trans Pattern Anal Machine Intel, 1997, 19: 380-393 CrossRef Google Scholar

[11] Nocedal J, Wright S. Numerical Optimization. 2nd ed. New York: Springer, 2006. Google Scholar

[12] Gayar N E, Schwenker F, Palm G. A study of the robustness of KNN classifiers trained using soft labels. In: Proceedings of the 2nd Conference Artificial Neural Networks in Pattern Recognition, Berlin, 2006. 67--80. Google Scholar

[13] Jiang X F, Yi Z, Lv J C. Fuzzy SVM with a new fuzzy membership function. Neural Comput Appl, 2006, 15: 268-276 CrossRef Google Scholar

[14] Lin X T, Chen X W. Mr.KNN: soft relevance for multi-label classification. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, New York, 2010. 349--358. Google Scholar

[15] Jiang J Y, Tsai S C, Lee S J. FSKNN: multi-label text categorization based on fuzzy similarity and k nearest neighbors. Expert Syst Appl, 2012, 39: 2813-2821 CrossRef Google Scholar

[16] Klir J G, Yuan B. Fuzzy Sets and Fuzzy Logic: Theory and Applications. Upper Saddle River: Prentice Hall, 1995. Google Scholar

[17] Li Y K, Zhang M L, Geng X. Leveraging implicit relative labeling-importance information for effective multi-label learning. In: Proceedings of IEEE International Conference on Data Mining, Piscataway, 2015. 251--260. Google Scholar

[18] Zhu X J, Goldberg A B. Introduction to Semi-Supervised Learning. Boca Raton: Morgan and Claypool Publishers, 2009. Google Scholar

[19] Hou P, Geng X, Zhang M L. Multi-label manifold learning. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, Menlo Park, 2016. 1680--1686. Google Scholar

[20] Zhu X J. Semi-supervised learning with graphs. Dissertation for Ph.D. Degree. Pittsburgh: Carnegie Mellon University, 2005. Google Scholar