logo

SCIENTIA SINICA Informationis, Volume 49 , Issue 1 : 42-56(2019) https://doi.org/10.1360/N112018-00018

A fingerprint-template-generating method based on the 3D mapping of local minutiae

More info
  • ReceivedJan 18, 2018
  • AcceptedApr 20, 2018
  • PublishedJan 8, 2019

Abstract


Funded by

国家自然科学基金(61301091)

陕西省自然科学基础研究计划项目(2017JQ6010)


References

[1] Nagar A. Biometric template security. Eurasip J Adv Signal Process, 2008, 2008: 1--17. Google Scholar

[2] Rane S, Wang Y, Draper S C, et al. Secure biometrics: concepts, authentication architectures, and challenges. IEEE Signal Process Mag, 2013, 30: 51--64. Google Scholar

[3] Patel V M, Ratha N K, Chellappa R. Cancelable Biometrics: A review. IEEE Signal Process Mag, 2015, 32: 54-65 CrossRef ADS Google Scholar

[4] Kaur G, Singh G, Kumar V. A review on biometric recognition. Int J Bio-Sci Bio-Technol, 2014, 6: 69--76. Google Scholar

[5] Teoh A B J, Ling D N C, Goh A. Biohashing: two factor authentication featuring fingerprint data and tokenised random number. Pattern Recognition, 2004, 37: 2245-2255 CrossRef Google Scholar

[6] Kong A, Cheung K H, Zhang D. An analysis of BioHashing and its variants. Pattern Recognition, 2006, 39: 1359-1368 CrossRef Google Scholar

[7] Nanni L, Lumini A. Empirical tests on BioHashing. Neurocomputing, 2006, 69: 2390-2395 CrossRef Google Scholar

[8] Ratha N K, Chikkerur S, Connell J H. Generating cancelable fingerprint templates.. IEEE Trans Pattern Anal Mach Intell, 2007, 29: 561-572 CrossRef PubMed Google Scholar

[9] Feng Q, Su F, Cai A N, et al. Cracking cancelable fingerprint template of ratha. In: Proceedings of IEEE International Symposium on Computer Science and Computational Technology, 2008. 572--575. Google Scholar

[10] Tulyakov S, Farooq F, Mansukhani P. Symmetric hash functions for secure fingerprint biometric systems. Pattern Recognition Lett, 2007, 28: 2427-2436 CrossRef Google Scholar

[11] Ahmad T, Hu J K. Generating cancelable biometrie templates using a projection line. In: Proceedings of IEEE International Conference on Control Automation Robotics & Vision, 2011. 7--12. Google Scholar

[12] Chulhan Lee , Jeung-Yoon Choi , Kar-Ann Toh . Alignment-Free Cancelable Fingerprint Templates Based on Local Minutiae Information. IEEE Trans Syst Man Cybern B, 2007, 37: 980-992 CrossRef Google Scholar

[13] Lee C, Kim J. Cancelable fingerprint templates using minutiae-based bit-strings. J Network Comput Appl, 2010, 33: 236-246 CrossRef Google Scholar

[14] Ahmad T, Hu J K, Wang S. String-based cancelable fingerprint templates. In: Proceedings of IEEE International Conference on Industrial Electronics and Applications, 2011. 1028--1033. Google Scholar

[15] Jin Z, Jin Teoh A B, Ong T S. Fingerprint template protection with minutiae-based bit-string for security and privacy preserving. Expert Syst Appl, 2012, 39: 6157-6167 CrossRef Google Scholar

[16] Cappelli R, Ferrara M, Maltoni D. Minutia Cylinder-Code: a new representation and matching technique for fingerprint recognition.. IEEE Trans Pattern Anal Mach Intell, 2010, 32: 2128-2141 CrossRef PubMed Google Scholar

[17] Ferrara M, Maltoni D, Cappelli R. Noninvertible Minutia Cylinder-Code Representation. IEEE TransInformForensic Secur, 2012, 7: 1727-1737 CrossRef Google Scholar

[18] Wang S, Hu J. Alignment-free cancelable fingerprint template design: A densely infinite-to-one mapping (DITOM) approach. Pattern Recognition, 2012, 45: 4129-4137 CrossRef Google Scholar

[19] Wang S, Hu J. Design of alignment-free cancelable fingerprint templates via curtailed circular convolution. Pattern Recognition, 2014, 47: 1321-1329 CrossRef Google Scholar

[20] Li S, Kot A C. Fingerprint Combination for Privacy Protection. IEEE TransInformForensic Secur, 2013, 8: 350-360 CrossRef Google Scholar

[21] Moujahdi C, Bebis G, Ghouzali S. Fingerprint shell: Secure representation of fingerprint template. Pattern Recognition Lett, 2014, 45: 189-196 CrossRef Google Scholar

[22] Sandhya M, Prasad M V N K. K-nearest neighborhood structure (k-NNS) based alignment-free method for fingerprint template protection. In: Proceedings of IEEE International Conference on Biometrics, 2015. 386--393. Google Scholar

[23] Pambudi D S, Ahmad T, Usagawa T. Improving the performance of projection-based cancelable fingerprint template method. In: Proceedings of IEEE International Conference on Soft Computing and Pattern Recognition, 2016. 84--88. Google Scholar

[24] Wang S, Hu J. A blind system identification approach to cancelable fingerprint templates. Pattern Recognition, 2016, 54: 14-22 CrossRef Google Scholar

[25] Wang S, Deng G, Hu J. A partial Hadamard transform approach to the design of cancelable fingerprint templates containing binary biometric representations. Pattern Recognition, 2017, 61: 447-458 CrossRef Google Scholar

[26] Wang S, Yang W, Hu J. Design of Alignment-Free Cancelable Fingerprint Templates with Zoned Minutia Pairs. Pattern Recognition, 2017, 66: 295-301 CrossRef Google Scholar

[27] Adámek M, Matysek M, Neumann P. Security of Biometric Systems. Procedia Eng, 2015, 100: 169-176 CrossRef Google Scholar

[28] Xu Q W, Zhang X F. Generating cancelable fingerprint templates using minutiae local information. Acta Automat Sin, 2017, 43: 645--652. Google Scholar

[29] Das P, Karthik K, Chandra Garai B. A robust alignment-free fingerprint hashing algorithm based on minimum distance graphs. Pattern Recognition, 2012, 45: 3373-3388 CrossRef Google Scholar

[30] Jin Z, Lim M H, Teoh A B J. A non-invertible Randomized Graph-based Hamming Embedding for generating cancelable fingerprint template. Pattern Recognition Lett, 2014, 42: 137-147 CrossRef Google Scholar

  • Figure 1

    (Color online) The three-dimensional mapping of minutiae

  • Figure 2

    Process diagram of proposed method for fingerprint template generation

  • Figure 3

    (Color online) Parameter adaptive circular areas

  • Figure 4

    (Color online) The distance and angle formed by minutiae pair $(m_{j},m_{i})$

  • Figure 5

    (Color online) Features of projected minutiae

  • Figure 6

    (Color online) Three-dimensional array with cell size $\sigma_{L},~\sigma_{\gamma},~\sigma_{\phi}$

  • Figure 7

    (Color online) Genuine and imposter distributions in the safe-PIN scenario (with different keys). (a) FVC2002-DB1; (b) FVC2002-DB2

  • Figure 8

    (Color online) Genuine and imposter distributions in the stolen-PIN scenario (with the same key). (a) FVC2002-DB1; (b) FVC2002-DB2

  • Figure 9

    (Color online) FRR/FAR of FVC2002-DB1 and -DB2 in the stolen-PIN scenario. (a) FVC2002-DB1;protectłinebreak (b) FVC2002-DB2

  • Figure 10

    (Color online) ROC curves of Wang's method and proposed method in the stolen-PIN scenario

  • Figure 11

    (Color online) Pseudo-imposter and imposter (with different key) distributions for FVC2002-DB1 and -DB2. (a) FVC2002-DB1; (b) FVC2002-DB2

  • Table 1   Information about the databases used in our experiments
    Characteristics FVC2002-DB1 FVC2002-DB2
    Sensor Identix TouchView$\amalg$ (optical) Biometrika FX2000 (optical)
    Number of fingers 100 100
    Number of image per finger 8 8
    Resolution 500 dpi 569 dpi
    Image size 388 $\times$ 374 296$\times$560
    Quality Good Medium
  • Table 2   Parameter settings in the experiments
    Parameter Description Value range
    $\rho_{1},\rho_{2}$ The slopes of $y_{1},y_{2}$ $[-5,5]$
    $~c_{1},c_{2}~$ The $y$-intercepts of $y_{1},y_{2}$ $\{~-10,-9,\ldots,~10~\}$
    $~c_{L},c_{\gamma}$ The length and width of the cell $\{~15,16,\ldots,~30~\}$
    $~c_{\phi}~$ The height of the cell $\{~20,21,\ldots,~35~\}$
    $~G~$ The size of binary bit string $\{~200,250,\ldots,~3000~\}$
    $~P~$ The rows of pseudo-random matrix ($R$) $\{~300,400,\ldots,~2000~\}$
  • Table 3   EER of different parameters $(G,P)$
    $G$ $P$ FVC2002-DB1 FVC2002-DB2
    200 300 0.32 0.24
    1000 0.21 0.13
    1000 300 0.19 0.08
    1000 0.18 0.07
    1450 300 0.17 0.06
    1000 0.15 0.06
  • Table 4   EER comparison between the Wang's method and proposed method
    Methods Safe-PIN Stolen-PIN
    -DB1 (%) -DB2 (%) -DB1 (%) -DB2 (%)
    Wang et al. [26] 0 0 0.19 1
    Proposed method 0 0 0.1717 0.0606
  • Table 5   EER comparison under the stolen-PIN scenario
    Method FVC2002-DB1 FVC2002-DB2
    Lee and Kim [13] 10.30 9.50
    Jin et al. [15] 5.19 5.65
    Sandhya and Prasad [22] 4.71 3.44
    Das et al. [29] 2.27 3.79
    Jin et al. [30] 4.36 1.77
    Wang and Hu [19] 2 2.3
    Wang and Hu [24] 3 2
    Wang et al. [25] 1 2
    Proposed method 0.17 0.06