logo

SCIENTIA SINICA Informationis, Volume 49 , Issue 7 : 886-899(2019) https://doi.org/10.1360/N112018-00015

Design of SR-NYQ prototype filter in an FBMC system

More info
  • ReceivedJan 16, 2018
  • AcceptedJul 2, 2018
  • PublishedApr 30, 2019

Abstract


Funded by

国家自然科学基金(61471322)


References

[1] You X H, Pan Z W, Gao X Q, et al. The 5G mobile communication: the development trends and its emerging key techniques. Sci Sin Inform, 2014, 44: 551--563. Google Scholar

[2] Dongming W, Yu Z, Hao W. An overview of transmission theory and techniques of large-scaleantenna systems for 5G wireless communications. Sci Sin inf Sci, 2016, 46: 3-21 CrossRef Google Scholar

[3] Ijaz A, Zhang L, Grau M, et al. Enabling massive IoT in 5G and beyond systems: PHY radio frame design considerations. IEEE Access, 2017, 4: 3322--3339. Google Scholar

[4] Gupta A, Jha R K. A Survey of 5G Network: Architecture and Emerging Technologies. IEEE Access, 2015, 3: 1206-1232 CrossRef Google Scholar

[5] Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Surv Tut, 2017, 18: 1617--1655. Google Scholar

[6] Ding Z, Liu Y, Choi J. Application of Non-Orthogonal Multiple Access in LTE and 5G Networks. IEEE Commun Mag, 2017, 55: 185-191 CrossRef Google Scholar

[7] Yuan Y F, Zhu L M. Application scenarios and enabling technologies of 5G. China Commun, 2014, 11: 69--79. Google Scholar

[8] Wunder G, Kasparick M, Wild T, et al. 5GNOW: Intermediate frame structure and transceiver concepts. In: Processdings of Globecom Workshops, Austin, 2014. 565--570. Google Scholar

[9] Kasparick M, Wunder G, Chen Y, et al. 5G waveform candidate selection D3.1. 5GNOW, 2013. http://5gnow.eu/wp-content/uploads/2015/04/5GNOW_D3.1.pdf/. Google Scholar

[10] Farhang-Boroujeny B. OFDM Versus Filter Bank Multicarrier. IEEE Signal Process Mag, 2011, 28: 92-112 CrossRef ADS Google Scholar

[11] Nissel R, Rupp M. OFDM and FBMC-OQAM in Doubly-Selective Channels: Calculating the Bit Error Probability. IEEE Commun Lett, 2017, 21: 1297-1300 CrossRef Google Scholar

[12] Schaich F, Wild T, Chen Y. Waveform contenders for 5G-Suitability for short packet and low latency transmissions. In: Proceedings of Vehicular Technology Conference (VTC Spring), Seoul, 2014. 1--5. Google Scholar

[13] Aminijavaheri A, Farhang A, RezazadehReyhani A, et al. Impact of timing and frequency offsets on multicarrier waveform candidates for 5G. In: Proceedings of Signal Processing and Signal Processing Education Workshop, Salt Lake City, 2015. 178--183. Google Scholar

[14] Srinivasan S, Dikmese S, Renfors M. Spectrum sensing and spectrum utilization model for OFDM and FBMC based cognitive radios. In: Proceedings of Signal Processing Advances in Wireless Communications, Cesme, 2012. 139--143. Google Scholar

[15] Dikmese S, Srinivasan S, Shaat M, et al. Spectrum sensing and resource allocation for multicarrier cognitive radio systems under interference and power constraints. EURASIP J Adv Signal Process, 2014, 1: 68--80. Google Scholar

[16] Farhang-Boroujeny B. Filter bank multicarrier modulation: a waveform candidate for 5G and beyond. Adv Electr Eng, 2014, 2014: 482805. Google Scholar

[17] Sahin A, Guvenc I, Arslan H. A comparative study of FBMC prototype filters in doubly dispersive channels. In: Proceedings of Globecom Workshops, Anaheim, 2012. 197--203. Google Scholar

[18] Sahin A, Guvenc I, Arslan H. A Survey on Multicarrier Communications: Prototype Filters, Lattice Structures, and Implementation Aspects. IEEE Commun Surv Tutorials, 2014, 16: 1312-1338 CrossRef Google Scholar

[19] Chen D, Qu D, Jiang T, et al. Prototype filter optimization to minimize stopband energy with NPR constraints for filter bank multicarrier modulation systems. IEEE Trans Signal Process, 2012, 61: 159--169. Google Scholar

[20] Aminjavaheri A, Farhang A, Doyle L, et al. Prototype filter design for FBMC in massive MIMO channels. In: Proceedings of International Conference on Communications, Paris, 2017. Google Scholar

[21] Viholainen A, Ihalainen T, Stitz T H, et al. Prototype filter design for filter bank based multicarrier transmission. In: Proceedings of European Signal Processing Conference, Glasgow, 2009. 1359--1363. Google Scholar

[22] Viholainen A, Bellanger M, Huchard M. Prototype filter and structure optimization. PHYDYAS, 2009. http://www.ict-phydyas.org/delivrables/PHYDYAS-D5-1.pdf. Google Scholar

[23] Farhang-Boroujeny B. A Square-Root Nyquist (M) Filter Design for Digital Communication Systems. IEEE Trans Signal Process, 2008, 56: 2127-2132 CrossRef ADS Google Scholar

[24] Mirabbasi S, Martin K. Overlapped complex-modulated transmultiplexer filters with simplified design and superior stopbands. IEEE Trans Circ Syst II: Analog and Digital Signal Processing, 2003, 8: 456--469. Google Scholar

[25] Datar A, Jain A, Sharma P C. Design and performance analysis of adjustable window functions based cosine modulated filter banks. Digital Signal Processing, 2013, 23: 412-417 CrossRef Google Scholar

[26] Harris F J. Multirate Signal Processing for Communication Systems. Prentice Hall PTR, 2004. Google Scholar

[27] Lai X, Lin Z. Optimal Design of Constrained FIR Filters Without Phase Response Specifications. IEEE Trans Signal Process, 2014, 62: 4532-4546 CrossRef ADS Google Scholar

[28] K S, Elias E. Prototype Filter Design Approaches for Near Perfect Reconstruction Cosine Modulated Filter Banks - A Review. J Sign Process Syst, 2015, 81: 183-195 CrossRef Google Scholar

[29] Hua J, Wen, J, Lu W, et al. Design and application of nearly Nyquist and SR-Nyquist FIR filter based on linear programming and spectrum factorization. In: Proceedings of Conference on Industrial Electronics and Applications, Hangzhou, 2014. 64--67. Google Scholar

  • Table 1   The performances comparison of the optimized SR-NYQ filters with the PHYDYAS filter and the IOTA filter
    $\{M=64,K=4/3\}$ $N_p$ $R_p$ (dB) $A_s$ (dB) $E_s$ ${\rm~ISI}_t$ ${\rm~ISI}_f$
    PHYDYAS 257 3.0103 39.8544 $1.3476\times10^{-6}$ $8.14\times10^{-4}$ $6.27\times10^{-4}$
    IOTA 257 2.6807 13.8932 $5.6124\times10^{-4}$ $2.70\times10^{-3}$ $4.22\times10^{-2}$
    ${\rm~{h1}_A}$ 257 3.0033 49.4834 $4.0514\times10^{-8}$ $8.00\times10^{-4}$ $7.89\times10^{-4}$
    ${\rm~{h1}_B}$ 257 3.0429 55.7287 $9.8038\times10^{-9}$ $1.40\times10^{-2}$ $1.16\times10^{-2}$
    ${\rm~{h1}_C}$ 193 2.9926 39.7521 $1.2428\times10^{-6}$ $8.10\times10^{-4}$ $8.06\times10^{-4}$
  • Table 2   The parameters for the BER simulation of FBMC system
    Parameter Value
    Subcarrier spacing $\Delta~f$ $15$ kHz
    Number of subcarriers $64$
    FFT size $64$
    Number of used subcarriers $32$
    Number of users $2$
    Sampling rate $0.96$ MHz
    Modulation $4\text{-}$QAM
    Overlapping factor $K~\in~\{3,4\}$
  • Table 3   The further BER comparison between the ${\rm~{h1}_B}$ and the PHYDYAS filter
    SNR (dB) 0 5 10 15 20 25
    PHYDYAS 0.3430 0.1755 0.0852 0.0516 0.0377 0.0277
    ${\rm~{h1}_B}$ 0.3403 0.1702 0.0814 0.0483 0.0347 0.0243