logo

SCIENTIA SINICA Informationis, Volume 48 , Issue 7 : 871-887(2018) https://doi.org/10.1360/N112017-00295

High-accuracy analysis of finite-element method for two-term mixed time-fractional diffusion-wave equations

More info
  • ReceivedMar 27, 2018
  • AcceptedApr 8, 2018
  • PublishedJul 12, 2018

Abstract


Funded by

国家自然科学基金(11771438,11101381,11471296)


References

[1] Oldham K B, Spanier J. The Fractional Calculus. New York: Academic Press, 1974. Google Scholar

[2] Koszto?owicz T. Subdiffusion in a system with a thick membrane. J Membrane Sci, 2008, 320: 492-499 CrossRef Google Scholar

[3] Chen J, Liu F, Turner I. THE FUNDAMENTAL AND NUMERICAL SOLUTIONS OF THE RIESZ SPACE-FRACTIONAL REACTION-DISPERSION EQUATION. ANZ, 2008, 50: 45-57 CrossRef Google Scholar

[4] Zhuang P, Liu F, Anh V. New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation. SIAM J Numer Anal, 2008, 46: 1079-1095 CrossRef Google Scholar

[5] Podlubny I. Fractional Differential Equations. Manhattan: Academic Press, 1999. Google Scholar

[6] Murio D A. Implicit finite difference approximation for time fractional diffusion equations. Comput Math Appl, 2008, 56: 1138-1145 CrossRef Google Scholar

[7] Zhang Q, Zhang J W, Jiang S D, et al. Numerical solution to a linearized time fractional KdV equation on unbounded domains. Math Comput, 2018, 87: 693--719. Google Scholar

[8] Zeng F, Li C, Liu F. Numerical Algorithms for Time-Fractional Subdiffusion Equation with Second-Order Accuracy. SIAM J Sci Comput, 2015, 37: A55-A78 CrossRef Google Scholar

[9] Liu Y, Yu Z, Li H. Time two-mesh algorithm combined with finite element method for time fractional water wave model. Int J Heat Mass Transfer, 2018, 120: 1132-1145 CrossRef Google Scholar

[10] Jiang Y, Ma J. High-order finite element methods for time-fractional partial differential equations. J Comput Appl Math, 2011, 235: 3285-3290 CrossRef Google Scholar

[11] Wang F L, Liu F, Zhao Y M. A novel approach of high accuracy analysis of anisotropic bilinear finite element for time-fractional diffusion equations with variable coefficient. Comput Math Appl, 2018, 75: 3786-3800 CrossRef Google Scholar

[12] Yang J Y, Zhao Y M, Liu N. An implicit MLS meshless method for 2-D time dependent fractional diffusion-wave equation. Appl Math Model, 2015, 39: 1229-1240 CrossRef Google Scholar

[13] Mardani A, Hooshmandasl M R, Heydari M H. A meshless method for solving the time fractional advection-diffusion equation with variable coefficients. Comput Math Appl, 2018, 75: 122-133 CrossRef Google Scholar

[14] Shivanian E, Jafarabadi A. Analysis of the spectral meshless radial point interpolation for solving fractional reaction-subdiffusion equation. J Comput Appl Math, 2018, 336: 98-113 CrossRef Google Scholar

[15] Mustapha K, Abdallah B, Furati K M. A Discontinuous Petrov--Galerkin Method for Time-Fractional Diffusion Equations. SIAM J Numer Anal, 2014, 52: 2512-2529 CrossRef Google Scholar

[16] Zhao Y, Chen P, Bu W. Two Mixed Finite Element Methods for Time-Fractional Diffusion Equations. J Sci Comput, 2017, 70: 407-428 CrossRef Google Scholar

[17] Li X, Xu C. A Space-Time Spectral Method for the Time Fractional Diffusion Equation. SIAM J Numer Anal, 2009, 47: 2108-2131 CrossRef Google Scholar

[18] Liu Q X, Gu Y T, Zhuang P H. An implicit RBF meshless approach for time fractional diffusion equations. Comput Mech, 2011, 48: 1-12 CrossRef ADS Google Scholar

[19] Lin Y, Xu C. Finite difference/spectral approximations for the time-fractional diffusion equation. J Comput Phys, 2007, 225: 1533-1552 CrossRef ADS Google Scholar

[20] Shi Z G, Zhao Y M, Liu F. Superconverse analysis of an H$^1$-Galerkin mixed finite element method for two-dimensional multi-term time fractional diffusion equations. Comput Math Appl, 2017, 74: 1903-1914 CrossRef Google Scholar

[21] Jin B, Lazarov R, Liu Y. The Galerkin finite element method for a multi-term time-fractional diffusion equation. J Comput Phys, 2015, 281: 825-843 CrossRef ADS arXiv Google Scholar

[22] Zheng M, Liu F, Anh V. A high-order spectral method for the multi-term time-fractional diffusion equations. Appl Math Model, 2016, 40: 4970-4985 CrossRef Google Scholar

[23] Zhao Y, Zhang Y, Liu F. Convergence and superconvergence of a fully-discrete scheme for multi-term time fractional diffusion equations. Comput Math Appl, 2017, 73: 1087-1099 CrossRef Google Scholar

[24] Zhao Y M, Zhang Y D, Liu F. Analytical solution and nonconforming finite element approximation for the 2D multi-term fractional subdiffusion equation. Appl Math Model, 2016, 40: 8810-8825 CrossRef Google Scholar

[25] Carcione J M, Cavallini F, Mainardi F. Time-domain Modeling of Constant-Q Seismic Waves Using Fractional Derivatives. Pure Appl Geophys, 2002, 159: 1719-1736 CrossRef ADS Google Scholar

[26] Sun Z, Wu X. A fully discrete difference scheme for a diffusion-wave system. Appl Numer Math, 2006, 56: 193-209 CrossRef Google Scholar

[27] Fairweather G, Yang X, Xu D. An ADI Crank-Nicolson Orthogonal Spline Collocation Method for the Two-Dimensional Fractional Diffusion-Wave Equation. J Sci Comput, 2015, 65: 1217-1239 CrossRef Google Scholar

[28] Huang J, Tang Y, Vázquez L. Two finite difference schemes for time fractional diffusion-wave equation. Numer Algor, 2013, 64: 707-720 CrossRef Google Scholar

[29] Du R, Cao W R, Sun Z Z. A compact difference scheme for the fractional diffusion-wave equation. Appl Math Model, 2010, 34: 2998-3007 CrossRef Google Scholar

[30] Jin B, Lazarov R, Zhou Z. Two Fully Discrete Schemes for Fractional Diffusion and Diffusion-Wave Equations with Nonsmooth Data. SIAM J Sci Comput, 2016, 38: A146-A170 CrossRef Google Scholar

[31] Li L, Xu D, Luo M. Alternating direction implicit Galerkin finite element method for the two-dimensional fractional diffusion-wave equation. J Comput Phys, 2013, 255: 471-485 CrossRef ADS Google Scholar

[32] Bhrawy A H, Doha E H, Baleanu D. A spectral tau algorithm based on Jacobi operational matrix for numerical solution of time fractional diffusion-wave equations. J Comput Phys, 2015, 293: 142-156 CrossRef ADS Google Scholar

[33] Zhang Y D, Zhao Y M, Wang F L. High-accuracy finite element method for 2D time fractional diffusion-wave equation on anisotropic meshes. Int J Comput Math, 2018, 95: 218-230 CrossRef Google Scholar

[34] Liu F W, Meerschaert M M, McGough R, et al. Numerical methods for solving the multi-term time fractional wave equations. Fract Calc Appl Anal, 2013, 16: 9--25. Google Scholar

[35] Kilbas A A, Srivastava H M, Trujillo J J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006. Google Scholar

[36] Li M, Guan X, Mao S. Convergence and Superconvergence Analysis of Lagrange Rectangular Elements with any Order on Arbitrary Rectangular Meshes. JCM, 2014, 32: 169-182 CrossRef Google Scholar

[37] Huang Y, Li J, Wu C. Superconvergence Analysis for Linear Tetrahedral Edge Elements. J Sci Comput, 2015, 62: 122-145 CrossRef Google Scholar

[38] Shi D, Wang P, Zhao Y. Superconvergence analysis of anisotropic linear triangular finite element for nonlinear Schr?dinger equation. Appl Math Lett, 2014, 38: 129-134 CrossRef Google Scholar

[39] Lin Q, Lin J F. Finite Element Methods: Accuracy and Improvement. Beijing: Science Press, 2006. Google Scholar

[40] Lin Q, Yan N N. The Construction and Analysis of High Efficiency Finite Element Methods. Baoding: HeBei University Press, 1996. Google Scholar

[41] Sun Z Z. The Method of Order Reduction and Its Application to the Numerical Solutions of Partial Differential Equations. Beijing: Science Press, 2009. Google Scholar

[42] López-Marcos J C. A Difference Scheme for a Nonlinear Partial Integrodifferential Equation. SIAM J Numer Anal, 1990, 27: 20-31 CrossRef Google Scholar

[43] Zhang Y, Sun Z, Zhao X. Compact Alternating Direction Implicit Scheme for the Two-Dimensional Fractional Diffusion-Wave Equation. SIAM J Numer Anal, 2012, 50: 1535-1555 CrossRef Google Scholar

[44] Ren J, Sun Z. Numerical Algorithm With High Spatial Accuracy for the Fractional Diffusion-Wave Equation With Neumann Boundary Conditions. J Sci Comput, 2013, 56: 381-408 CrossRef Google Scholar

[45] Feng L B, Liu F W, Turner I. Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady MHD Couette flow of a generalized Oldroyd-B fluid,. arXiv Google Scholar

[46] Shi D Y, Liang H. A new unconventional Hermite type anisotropic rectangular element superconvergence analysis and extrapolation. J Comput Math, 2005, 27: 369--382. Google Scholar

[47] Shi D Y, Wang F L, Shi Y H. The general format of the high accuracy analysis of the anisotropic $EQ_1^{rot}$ nonconforming element. J Comput Math, 2013, 35: 239--252. Google Scholar

[48] Lin Q. Superconvergence and extrapolation of non-conforming low order finite elements applied to the Poisson equation. IMA J Numer Anal, 2005, 25: 160-181 CrossRef Google Scholar

[49] Shi D Y, Mao S P, Chen S C. An anisotropic nonconforming finite element with some superconvergence results. J Comput Math, 2005, 23: 261--274. Google Scholar

[50] Shi D Y, Wang H H, Du Y P. An anisotropic nonconforming finite element method for approximating a class of nonlinear Sobolev equations. J Comput Math, 2009, 27: 299--314. Google Scholar

[51] Shi D Y, Zhou J Q, Shi D W. A new low order least squares nonconforming characteristics mixed finite element method for Burgers' equation. Appl Math Comput, 2013, 219: 11302--11310. Google Scholar

[52] Shi D Y, Yu Z Y. Low-order nonconforming mixed finite element methods for stationary inconpressible magnetohydrodynamics equations. J Appl Math, 2013, 10: 904--919. Google Scholar

[53] Rannacher R, Turek S. Simple nonconforming quadrilateral Stokes element. Numer Methods Partial Differ Eq, 1992, 8: 97-111 CrossRef Google Scholar

[54] Hu J, Meng H Y, Shi Z C. Application of constrained nonconforming rotational $Q_1$-element in stokes and plane elastic problems. J Comput Math, 2005, 27: 311--324. Google Scholar

[55] Park C, Sheen D. $P_1$-nonconforming quadrilateral finite element method for second order elliptic problems. SIAM J Numer Anal, 2003, 41: 624-640 CrossRef Google Scholar

[56] Shi D, Hao X. ACCURACY ANALYSIS FOR QUASI-CAREY ELEMENT*. J Syst Sci Complex, 2008, 21: 456-462 CrossRef Google Scholar

[57] Shi D, Xu C, Chen J. Anisotropic Nonconforming ${~EQ}_1^{rot}$ Quadrilateral Finite Element Approximation to Second Order Elliptic Problems. J Sci Comput, 2013, 56: 637-653 CrossRef Google Scholar

[58] Shi D Y, Xu C. EQ 1 rot nonconforming finite element approximation to Signorini problem. Sci China Math, 2013, 56: 1301-1311 CrossRef ADS Google Scholar

[59] Chen S, Shi D. ACCURACY ANALYSIS FOR QUASI-WILSON ELEMENT. Acta Math Sci, 2000, 20: 44-48 CrossRef Google Scholar

[60] Chen S. Anisotropic interpolation and quasi-Wilson element for narrow quadrilateral meshes. IMA J Numer Anal, 2004, 24: 77-95 CrossRef Google Scholar

[61] Shi D, Wang F, Zhao Y. Superconvergence analysis and extrapolation of quasi-Wilson nonconforming finite element method for nonlinear Sobolev equations. Acta Math Appl Sin Engl Ser, 2013, 29: 403-414 CrossRef Google Scholar

[62] Shi D Y, Pei L F. Nonconforming quadrilateral finite element method for a class of nonlinear sine-Gorden equations. Appl Math Comput, 2013, 219: 9447--9460. Google Scholar

[63] Knobloch P, Tobiska L. The $P_1^{mod}$ element: a new nonconforming finite element for convection diffusion problems. SIAM J Numer Anal, 2003, 41: 436-456 CrossRef Google Scholar

[64] Shi Z C, Jiang B, Xue W. A new superconvergence property of Wilson nonconforming finite element. Numerische Mathematik, 1997, 78: 259-268 CrossRef Google Scholar

[65] Shi D Y, Hao X B. High accuracy analysis of Sobolev-type equation anisotropic Carey element. J Eng Math, 2009, 29: 1021--1026. Google Scholar

  • Table 1   Temporal numerical results with $\alpha_1~=0.3,0.5,~\alpha~=~1.9,1.3$ at $~t_n=1$
    $\alpha_1,~\alpha$ $\tau$ $\|u^n-U^n\|_0$ Rate $\|u^n-U^n\|_1$ Rate $\|I_hu^n-U^n\|_1$ Rate $\|u^n-I_{2h}U^n\|_1$ Rate
    $t_n/3$ 4.373E$-$1 8.276E$-$1 8.978E$-$1 9.202E$-$1
    $\alpha_1=0.3$ $t_n/6$ 2.140E$-$1 1.031 3.985E$-$1 1.054 4.327E$-$1 1.053 4.387E$-$1 1.069
    $\alpha=1.9$ $t_n/12$ 1.017E$-$1 1.073 1.879E$-$1 1.084 2.037E$-$1 1.087 2.054E$-$1 1.094
    $t_n/24$ 4.768E$-$2 1.093 8.793E$-$2 1.096 9.574E$-$2 1.089 9.639E$-$2 1.092
    $t_n/3$ 1.619E$-$1 3.377E$-$1 3.536E$-$1 3.378E$-$1
    $\alpha_1=0.5$ $t_n/6$ 5.854E$-$2 1.467 1.214E$-$1 1.476 1.287E$-$1 1.458 1.307E$-$1 1.370
    $\alpha=1.3$ $t_n/12$ 2.069E$-$2 1.501 4.297E$-$2 1.499 4.632E$-$2 1.474 4.592E$-$2 1.509
    $t_n/24$ 7.242E$-$3 1.515 1.506E$-$2 1.496 1.622E$-$2 1.514 1.622E$-$2 1.505
  • Table 2   Spatial numerical results with $\alpha~=1.5,~\alpha_1=0.5,\tau=10^{-3}$ at $~t=0.3,0.5,0.9,1$
    $t$ $~m\times~n~$ $\|u^n-U^n\|_0$ Rate $\|u^n-U^n\|_1$ Rate $\|I_hu^n-U^n\|_1$ Rate $\|u^n-I_{2h}U^n\|_1$ Rate
    $4\times4$ 6.434E$-$4 6.034E$-$3 3.063E$-$3 3.954E$-$3
    $t=0.3$ $8\times8$ 1.525E$-$4 2.077 2.964E$-$3 1.026 7.922E$-$4 1.951 9.969E$-$4 1.987
    $16\times16$ 3.755E$-$5 2.021 1.475E$-$3 1.006 2.009E$-$4 1.979 2.507E$-$4 1.992
    $32\times32$ 9.352E$-$6 2.006 7.369E$-$4 1.002 5.168E$-$5 1.959 6.378E$-$5 1.975
    $4\times4$ 2.076E$-$3 1.930E$-$2 9.576E$-$3 1.247E$-$2
    $t=0.5$ $8\times8$ 4.923E$-$4 2.076 9.495E$-$3 1.024 2.478E$-$3 1.950 3.146E$-$3 1.986
    $16\times16$ 1.212E$-$4 2.022 4.728E$-$3 1.006 6.273E$-$4 1.982 7.900E$-$4 1.993
    $32\times32$ 3.004E$-$5 2.012 2.362E$-$3 1.001 1.598E$-$4 1.973 1.997E$-$4 1.984
    $4\times4$ 8.746E$-$3 7.893E$-$2 3.731E$-$2 4.951E$-$2
    $t=0.9$ $8\times8$ 2.079E$-$3 2.073 3.893E$-$2 1.020 9.676E$-$3 1.947 1.252E$-$2 1.984
    $16\times16$ 5.122E$-$4 2.021 1.939E$-$2 1.005 2.446E$-$3 1.984 3.140E$-$3 1.995
    $32\times32$ 1.268E$-$4 2.014 9.692E$-$3 1.001 6.181E$-$4 1.984 7.897E$-$4 1.992
    $4\times4$ 1.146E$-$2 1.024E$-$1 4.787E$-$2 6.384E$-$2
    $t=1$ $8\times8$ 2.726E$-$3 2.072 5.058E$-$2 1.019 1.242E$-$2 1.946 1.614E$-$2 1.983
    $16\times16$ 6.719E$-$4 2.020 2.521E$-$2 1.005 3.139E$-$3 1.984 4.051E$-$3 1.995
    $32\times32$ 1.665E$-$4 2.013 1.259E$-$2 1.001 7.926E$-$4 1.946 1.018E$-$3 1.993
  • Table 3   Spatial numerical results with $\alpha~=1.3,~\alpha_1=0.1,\tau=10^{-3}$ at $t=0.2,0.4,0.6,0.8$
    $t$ $~m\times~n~$ $\|u^n-U^n\|_0$ Rate $\|u^n-U^n\|_1$ Rate $\|I_hu^n-U^n\|_1$ Rate $\|u^n-I_{2h}U^n\|_1$ Rate
    $4\times4$ 1.155E$-$3 1.084E$-$2 5.508E$-$3 7.106E$-$3
    $t=0.2$ $8\times8$ 2.738E$-$4 2.077 5.323E$-$3 1.026 1.424E$-$3 1.951 1.792E$-$3 1.988
    $16\times16$ 6.744E$-$5 2.021 2.649E$-$3 1.006 3.611E$-$4 1.979 4.504E$-$4 1.992
    $32\times32$ 1.679E$-$5 2.006 1.323E$-$3 1.002 9.267E$-$5 1.962 1.144E$-$4 1.977
    $4\times4$ 6.156E$-$3 5.706E$-$2 2.813E$-$2 3.671E$-$2
    $t=0.4$ $8\times8$ 1.460E$-$3 2.076 2.808E$-$2 1.023 7.277E$-$3 1.950 9.261E$-$3 1.987
    $16\times16$ 3.599E$-$4 2.020 1.398E$-$2 1.006 1.837E$-$3 1.986 2.322E$-$3 1.996
    $32\times32$ 8.944E$-$5 2.009 6.984E$-$3 1.001 4.631E$-$4 1.988 5.831E$-$4 1.994
    $4\times4$ 1.656E$-$2 1.506E$-$1 7.195E$-$2 9.508E$-$2
    $t=0.6$ $8\times8$ 3.935E$-$3 2.073 7.425E$-$2 1.021 1.864E$-$2 1.948 2.402E$-$2 1.985
    $16\times16$ 9.707E$-$4 2.019 3.699E$-$2 1.005 4.705E$-$3 1.987 6.021E$-$3 1.996
    $32\times32$ 2.415E$-$4 2.007 1.848E$-$2 1.001 1.182E$-$3 1.993 1.508E$-$3 1.997
    $4\times4$ 3.374E$-$2 2.998E$-$1 1.389E$-$1 1.859E$-$1
    $t=0.8$ $8\times8$ 8.033E$-$3 2.071 1.480E$-$1 1.018 3.606E$-$2 1.945 4.701E$-$2 1.983
    $16\times16$ 1.983E$-$3 2.018 7.378E$-$2 1.004 9.099E$-$3 1.987 1.178E$-$2 1.996
    $32\times32$ 4.936E$-$4 2.006 3.686E$-$2 1.001 2.283E$-$3 1.995 2.950E$-$3 1.998