国家重点研发计划(2017YFC1404704)
[1] Wu Z Y, Zheng Y L, Chu F Y, et al. Research status and prospect of sonar-detecting techniques near submarine. Adv Earth Sci, 2005, 20: 1210--1217. Google Scholar
[2] Liu J N, Zhao J H. The present status and developing trend of the multibeam system. Hydrographic Surv Charting, 2002, 22: 3--6. Google Scholar
[3] Zhai G J, Wang K P, Liu Y H. Technology of airborne laser bathymetry. Hydrographic Surv Charting, 2014, 34: 72--75. Google Scholar
[4] 刘晨晨. 高分辨率成像声纳图像识别技术研究. 博士学位论文. 哈尔滨: 哈尔滨工程大学, 2006. Google Scholar
[5] 李富会, 史青法. 多波束和声纳在大面积水域中探测水下目标物的组合方法. 城市建设理论研究: 电子版, 2014. doi: 10.3969/j.issn.2095-2104.2014.07.0463. Google Scholar
[6] Sun W C, Xiao F M, Jin S H, et al. Comparison of the methods of multibeam echo intensity data recording. Hydrographic Surv Charting, 2011, 31: 35--38. Google Scholar
[7] Anderson J T, Holliday D V, Kloser R, et al. Acoustic Seabed Classification of Marine Physical and Biological Landscapes. ICES Cooperative Research Report. No. 286. 2007. Google Scholar
[8] Liu X, Li H S, Zhou T, et al. Multibeam seafloor imaging technology based on the multiple sub-array detection method. J Harbin Eng Univ, 2012, 33: 197--202. Google Scholar
[9] Li H S, Xu C, Zhou T. High-resolution integrated detection of underwater topography and geomorphology based on multibeam interferometric echo sounder. Appl Mech Mater, 2012, 212: 345-350 CrossRef ADS Google Scholar
[10] Tao C H, Jin X L, X F, et al. The prospect of seabed classification technology. Donghai Mar Sci, 2004, 22: 28--33. Google Scholar
[11] Roberts H H, Shedd W, Jr J H. Dive site geology: DSV ALVIN (2006) and ROV JASON II (2007) dives to the middle-lower continental slope, northern Gulf of Mexico. Deep Sea Res Part II, 2010, 57: 1837-1858 CrossRef ADS Google Scholar
[12] Sun Y S, Li Y R, Sheng M W, et al. Application prospect of multi-bean echosounder on AUV. China Offshore Platform, 2017, 32: 14--20. Google Scholar
[13] 李冬, 刘雷, 张永合. 海洋侧扫声呐探测技术的发展及应用. 港口经济, 2017, 6: 56--58. Google Scholar
[14] 梁业松. SIS-1000型海底图像系统在大面积扫海中的应用. 海洋测绘, 2001, 2: 52--54. Google Scholar
[15] Landman K, Akombelwa M, Forbes A. The establishment of the early scholarship of professional and technical surveying education in South Africa for the period 1657 to 1929. SA J Geomatics, 2017, 6: 1-10 CrossRef Google Scholar
[16] Wang X L. High resolution sonar based on sparse feature. Dissertation for Master Degree. Xi'an: Xidian University, 2014. Google Scholar
[17] 孙文玉. 图像声纳的相控发射机设计. 硕士学位论文. 哈尔滨: 哈尔滨工程大学, 2009. Google Scholar
[18] 李冬, 刘雷, 张永合. 海洋侧扫声呐探测技术的发展及应用. 港口经济, 2017, 6: 56--58(重复). Google Scholar
[19] Ren F J, Zhang L, Wang D J, et al. Development state of underwater vehicles. J Jiamusi Univ Natl Sci Edition, 2000, 18: 317--320. Google Scholar
[20] Smallwood D, Bachmayer R, Whitcomb L L. A new remotely operated underwater vehicle for dynamics and control research. In: Proceedings of the 11th International Symposium on Unmanned Untethered Submersible Technology, Durham, 1999. 370--377. Google Scholar
[21] Yuh J. Design and control of autonomous underwater robots: a survey. Autonomous Robots, 2000, 8: 7-24 CrossRef Google Scholar
[22] Xiao F M, Xia W, Wang Z G, et al. Analysis on relation between the cone of multibeam silence and the height of distinguishable target. Hydrographic Surv Charting, 2013, 33: 13--15. Google Scholar
[23] Yang W D, Li B, Zhang Y B. Study on well site investigation contents and techniques in deepwater oil and gas field. Offshore Oil, 2011, 31: 1--7. Google Scholar
[24] 温明明, 肖波, 徐行, 等. 深水油气田井场调查技术方法浅析. 南海地质研究, 2007, 118--126. Google Scholar
[25] Feng Z P. A review of the development of autonomous underwater vehicles (AUVs) in western countries. Torpedo Technol, 2005, 13: 5--9. Google Scholar
[26] Wu Y T, Zhou X H, Yang L. Underwater acoustic positioning system and its application. Hydrographic Surv Charting, 2003, 23: 18--21. Google Scholar
[27] Li S J, Bao G S, Wu S G. A practical overview and prospect of acoustic positioning technology. Ocean Technol, 2005, 24: 130--135. Google Scholar
[28] Yan Y, Ma P S, Wang D Y, et al. Development of deep sea ROV and its working system. Robot, 2005, 27: 82--89. Google Scholar
[29] Li C S. Research of visibility improving method for underwater observation video images. Dissertation for Master Degree. Qingdao: Ocean University of China, 2011. Google Scholar
[30] Ge Z F. Study on the restoration and mosaicing methods of underwater video. Dissertation for Master Degree. Qingdao: Ocean University of China, 2012. Google Scholar
[31] 徐静. 三维成像声纳. 2017. http://www.docin.com/p-769178147.html. Google Scholar
[32] 张小平. 高分辨率多波束成像声呐关键技术研究. 博士学位论文. 哈尔滨: 哈尔滨工程大学, 2005. Google Scholar
[33] 吴军民. 沉船打捞穿绳技术的探讨与研究. 硕士学位论文. 上海: 同济大学, 2005. Google Scholar
[34] Wang Z W. Current development of rescue and salvage equipments. J Mech Eng, 2013, 49: 91--100. Google Scholar
[35] Zhang W, Zhou X Q, Lou R. Technology of using trenchless horizoutal directional drilling passing lifting wires through the wreck. Sci Technol Ind, 2013, 13: 136--139. Google Scholar
[36] Zhang W, Zhou P F, Zhou X Q, et al. Discussion on application of non-digging technology in excavating steel wire holes in wreck removal operation. In: Proceedings of the 6th China International Rescue and Salvage Conference, Xi'an, 2010. Google Scholar
[37] 贾现军. 小型水下救援机器人位姿控制及其在水下搜救中的应用. 硕士学位论文. 杭州: 浙江大学, 2014. Google Scholar
Figure 1
(Color online) Conch ROV
Figure 2
(Color online) (a) “6000 m" deep sea ROV; (b) “Hippocampus" ROV
Figure 3
(Color online) (a) The rescue ROV discovers the losing ROV; (b) the rescue ROV grabs the losing ROV
Figure 4
(Color online) (a) Put the losing ROV in the basket; (b) the basket takes back the losing ROV
Figure 5
(Color online) (a) Actual satellite imagery; (b) multibeam Sonar imagery
Figure 6
(Color online) (a) Drop ROV from shipside; (b) drop markers based on the location of ROV
Figure 7
(Color online) ROV observes the cage underwater
Manufacturer | Product model | Vehicle | Performance index |
ELAC Nautik | ELAC SeaBeam 3020 | Vessel | Depth rating 50$\sim$9000 m, beam width 1$^{\circ}$/2$^{\circ}$, depth accuracy in accordance with IHO SP44 for depths greater than 100 m |
R2SONIC | SONIC 2026 | ROV/AUV, vessel | Sounding depth 800 m, beam width 0.45$^{\circ}$$\times$0.45$^{\circ}$ (450 kHz), resolution 1.25 cm |
Atlas | Hydrosweep MD/30 | Vessel | Sounding depth 5$\sim$7000 m, beam width 1$^{\circ}$$\times$1$^{\circ}$, resolution 6 cm |
Reson | Reson SeatBat IDH T50-R | Vessel | Sounding depth 0.5$\sim$550 m, beam width 0.5$^{\circ}$/1$^{\circ}$/2$^{\circ}$, resolution 6 mm |
Manufacturer | Product model | Vehicle | Performance index |
Teledyne BlueView | BlueView P900 | ROV/AUV, vessel, etc. | 2D imaging sonar, depth rating 1000 m, beam width 1$^{\circ}$$\times$20$^{\circ}$, resolution 2.5 cm |
Tritech | Gemini 720im | ROV/AUV, vessel | 3D imaging sonar, depth rating 200 m, beam width 90$^{\circ}$$\times$20$^{\circ}$, resolution 8 mm |
Teledyne BlueView | BlueView BV5000 | ROV/AUV | 3D imaging sonar, depth rating 300 m, beam width 1$^{\circ}$$\times$1$^{\circ}$, resolution 1.3 cm |
Sound Metrics公司 | ARIS VOYAGER 3000 | ROV/AUV | 3D imaging sonar, depth rating 4000 m, beam width 0.3$^{\circ}$$\times$15$^{\circ}$/0.2$^{\circ}$$\times$15$^{\circ}$, resolution 3 mm$\sim$10 cm |
Manufacturer | Product model | Depth rating (m) | Manipulator | Main tools |
WHOI | Jason 2/ Medea | 6000 | Two 7-function manipulators, Schilling Orion, Kraft Predator II | 12 cameras, optional tools, samplers, etc. |
ISE | HYSUB-150 | 6000 | Two 7-function manipulators | 6 cameras; optional tools,such as cutter, sampler, etc. |
MBARI | Tiburon | 4000 | Two 7-function manipulators, Schilling Conan, Kraft Raptor | 2 cameras, optional tools,such as drill, sampler, etc. |
MBARI (ISE) | Ventana | 1850 | Two 7-function manipulators, Schilling Titan3, ISE Magnum | 11 cameras, drill, etc. |
SAAB Seaeye | Jaguar | 6000 | one 7-function manipulators, one 4-function manipulators, Schilling Orion 7P, Schilling Orion 4R | 2 cameras, optional tools, samplers, etc. |
Manufacturer | Product model | Vehicle | Performance index |
FMC Schiling | ORION 7P/7R | light-/medium-class ROV | 7-function position/rate controlled hydraulic manipulator, weight 54 kg (air)/38 kg (water), standard depth 6500 msw |
FMC Schiling | TITAN 4 | ultra-heavy work class ROV | 7-function position controlled hydraulic manipulator, weight 100 kg (air)/78 kg (weight), standard depth 4000 msw/7000 msw |
FMC Schiling | CONAN 7P | light-/medium-class ROV | 7-function position controlled hydraulic manipulator, weight 107 kg (air)/ 73 kg (water), standard depth 3000 msw |
SAAB Seaeye Hydro-Lek | HLK-43000 | light-class ROV | 5-function manipulator, weight 6 kg (air)/4 kg (water), standard depth 80/160 bar |