logo

SCIENTIA SINICA Informationis, Volume 48 , Issue 9 : 1137-1151(2018) https://doi.org/10.1360/N112017-00283

An overview of the underwater search and salvage process based on ROV

More info
  • ReceivedDec 25, 2017
  • AcceptedMar 30, 2018
  • PublishedAug 30, 2018

Abstract


Funded by

国家重点研发计划(2017YFC1404704)


References

[1] Wu Z Y, Zheng Y L, Chu F Y, et al. Research status and prospect of sonar-detecting techniques near submarine. Adv Earth Sci, 2005, 20: 1210--1217. Google Scholar

[2] Liu J N, Zhao J H. The present status and developing trend of the multibeam system. Hydrographic Surv Charting, 2002, 22: 3--6. Google Scholar

[3] Zhai G J, Wang K P, Liu Y H. Technology of airborne laser bathymetry. Hydrographic Surv Charting, 2014, 34: 72--75. Google Scholar

[4] 刘晨晨. 高分辨率成像声纳图像识别技术研究. 博士学位论文. 哈尔滨: 哈尔滨工程大学, 2006. Google Scholar

[5] 李富会, 史青法. 多波束和声纳在大面积水域中探测水下目标物的组合方法. 城市建设理论研究: 电子版, 2014. doi: 10.3969/j.issn.2095-2104.2014.07.0463. Google Scholar

[6] Sun W C, Xiao F M, Jin S H, et al. Comparison of the methods of multibeam echo intensity data recording. Hydrographic Surv Charting, 2011, 31: 35--38. Google Scholar

[7] Anderson J T, Holliday D V, Kloser R, et al. Acoustic Seabed Classification of Marine Physical and Biological Landscapes. ICES Cooperative Research Report. No. 286. 2007. Google Scholar

[8] Liu X, Li H S, Zhou T, et al. Multibeam seafloor imaging technology based on the multiple sub-array detection method. J Harbin Eng Univ, 2012, 33: 197--202. Google Scholar

[9] Li H S, Xu C, Zhou T. High-resolution integrated detection of underwater topography and geomorphology based on multibeam interferometric echo sounder. Appl Mech Mater, 2012, 212: 345-350 CrossRef ADS Google Scholar

[10] Tao C H, Jin X L, X F, et al. The prospect of seabed classification technology. Donghai Mar Sci, 2004, 22: 28--33. Google Scholar

[11] Roberts H H, Shedd W, Jr J H. Dive site geology: DSV ALVIN (2006) and ROV JASON II (2007) dives to the middle-lower continental slope, northern Gulf of Mexico. Deep Sea Res Part II, 2010, 57: 1837-1858 CrossRef ADS Google Scholar

[12] Sun Y S, Li Y R, Sheng M W, et al. Application prospect of multi-bean echosounder on AUV. China Offshore Platform, 2017, 32: 14--20. Google Scholar

[13] 李冬, 刘雷, 张永合. 海洋侧扫声呐探测技术的发展及应用. 港口经济, 2017, 6: 56--58. Google Scholar

[14] 梁业松. SIS-1000型海底图像系统在大面积扫海中的应用. 海洋测绘, 2001, 2: 52--54. Google Scholar

[15] Landman K, Akombelwa M, Forbes A. The establishment of the early scholarship of professional and technical surveying education in South Africa for the period 1657 to 1929. SA J Geomatics, 2017, 6: 1-10 CrossRef Google Scholar

[16] Wang X L. High resolution sonar based on sparse feature. Dissertation for Master Degree. Xi'an: Xidian University, 2014. Google Scholar

[17] 孙文玉. 图像声纳的相控发射机设计. 硕士学位论文. 哈尔滨: 哈尔滨工程大学, 2009. Google Scholar

[18] 李冬, 刘雷, 张永合. 海洋侧扫声呐探测技术的发展及应用. 港口经济, 2017, 6: 56--58(重复). Google Scholar

[19] Ren F J, Zhang L, Wang D J, et al. Development state of underwater vehicles. J Jiamusi Univ Natl Sci Edition, 2000, 18: 317--320. Google Scholar

[20] Smallwood D, Bachmayer R, Whitcomb L L. A new remotely operated underwater vehicle for dynamics and control research. In: Proceedings of the 11th International Symposium on Unmanned Untethered Submersible Technology, Durham, 1999. 370--377. Google Scholar

[21] Yuh J. Design and control of autonomous underwater robots: a survey. Autonomous Robots, 2000, 8: 7-24 CrossRef Google Scholar

[22] Xiao F M, Xia W, Wang Z G, et al. Analysis on relation between the cone of multibeam silence and the height of distinguishable target. Hydrographic Surv Charting, 2013, 33: 13--15. Google Scholar

[23] Yang W D, Li B, Zhang Y B. Study on well site investigation contents and techniques in deepwater oil and gas field. Offshore Oil, 2011, 31: 1--7. Google Scholar

[24] 温明明, 肖波, 徐行, 等. 深水油气田井场调查技术方法浅析. 南海地质研究, 2007, 118--126. Google Scholar

[25] Feng Z P. A review of the development of autonomous underwater vehicles (AUVs) in western countries. Torpedo Technol, 2005, 13: 5--9. Google Scholar

[26] Wu Y T, Zhou X H, Yang L. Underwater acoustic positioning system and its application. Hydrographic Surv Charting, 2003, 23: 18--21. Google Scholar

[27] Li S J, Bao G S, Wu S G. A practical overview and prospect of acoustic positioning technology. Ocean Technol, 2005, 24: 130--135. Google Scholar

[28] Yan Y, Ma P S, Wang D Y, et al. Development of deep sea ROV and its working system. Robot, 2005, 27: 82--89. Google Scholar

[29] Li C S. Research of visibility improving method for underwater observation video images. Dissertation for Master Degree. Qingdao: Ocean University of China, 2011. Google Scholar

[30] Ge Z F. Study on the restoration and mosaicing methods of underwater video. Dissertation for Master Degree. Qingdao: Ocean University of China, 2012. Google Scholar

[31] 徐静. 三维成像声纳. 2017. http://www.docin.com/p-769178147.html. Google Scholar

[32] 张小平. 高分辨率多波束成像声呐关键技术研究. 博士学位论文. 哈尔滨: 哈尔滨工程大学, 2005. Google Scholar

[33] 吴军民. 沉船打捞穿绳技术的探讨与研究. 硕士学位论文. 上海: 同济大学, 2005. Google Scholar

[34] Wang Z W. Current development of rescue and salvage equipments. J Mech Eng, 2013, 49: 91--100. Google Scholar

[35] Zhang W, Zhou X Q, Lou R. Technology of using trenchless horizoutal directional drilling passing lifting wires through the wreck. Sci Technol Ind, 2013, 13: 136--139. Google Scholar

[36] Zhang W, Zhou P F, Zhou X Q, et al. Discussion on application of non-digging technology in excavating steel wire holes in wreck removal operation. In: Proceedings of the 6th China International Rescue and Salvage Conference, Xi'an, 2010. Google Scholar

[37] 贾现军. 小型水下救援机器人位姿控制及其在水下搜救中的应用. 硕士学位论文. 杭州: 浙江大学, 2014. Google Scholar

  • Figure 1

    (Color online) Conch ROV

  • Figure 2

    (Color online) (a) “6000 m" deep sea ROV; (b) “Hippocampus" ROV

  • Figure 3

    (Color online) (a) The rescue ROV discovers the losing ROV; (b) the rescue ROV grabs the losing ROV

  • Figure 4

    (Color online) (a) Put the losing ROV in the basket; (b) the basket takes back the losing ROV

  • Figure 5

    (Color online) (a) Actual satellite imagery; (b) multibeam Sonar imagery

  • Figure 6

    (Color online) (a) Drop ROV from shipside; (b) drop markers based on the location of ROV

  • Figure 7

    (Color online) ROV observes the cage underwater

  • Table 1   Several representative multibeam bathymetric system
    Manufacturer Product model Vehicle Performance index
    ELAC Nautik ELAC SeaBeam 3020 Vessel Depth rating 50$\sim$9000 m, beam width 1$^{\circ}$/2$^{\circ}$, depth accuracy in accordance with IHO SP44 for depths greater than 100 m
    R2SONIC SONIC 2026 ROV/AUV, vessel Sounding depth 800 m, beam width 0.45$^{\circ}$$\times$0.45$^{\circ}$ (450 kHz), resolution 1.25 cm
    Atlas Hydrosweep MD/30 Vessel Sounding depth 5$\sim$7000 m, beam width 1$^{\circ}$$\times$1$^{\circ}$, resolution 6 cm
    Reson Reson SeatBat IDH T50-R Vessel Sounding depth 0.5$\sim$550 m, beam width 0.5$^{\circ}$/1$^{\circ}$/2$^{\circ}$, resolution 6 mm
  • Table 2   Several representative imaging sonar
    Manufacturer Product model Vehicle Performance index
    Teledyne BlueView BlueView P900 ROV/AUV, vessel, etc. 2D imaging sonar, depth rating 1000 m, beam width 1$^{\circ}$$\times$20$^{\circ}$, resolution 2.5 cm
    Tritech Gemini 720im ROV/AUV, vessel 3D imaging sonar, depth rating 200 m, beam width 90$^{\circ}$$\times$20$^{\circ}$, resolution 8 mm
    Teledyne BlueView BlueView BV5000 ROV/AUV 3D imaging sonar, depth rating 300 m, beam width 1$^{\circ}$$\times$1$^{\circ}$, resolution 1.3 cm
    Sound Metrics公司 ARIS VOYAGER 3000 ROV/AUV 3D imaging sonar, depth rating 4000 m, beam width 0.3$^{\circ}$$\times$15$^{\circ}$/0.2$^{\circ}$$\times$15$^{\circ}$, resolution 3 mm$\sim$10 cm
  • Table 3   Several representative ROVs in world and their configuration
    Manufacturer Product model Depth rating (m) Manipulator Main tools
    WHOI Jason 2/ Medea 6000 Two 7-function manipulators, Schilling Orion, Kraft Predator II 12 cameras, optional tools, samplers, etc.
    ISE HYSUB-150 6000 Two 7-function manipulators 6 cameras; optional tools,such as cutter, sampler, etc.
    MBARI Tiburon 4000 Two 7-function manipulators, Schilling Conan, Kraft Raptor 2 cameras, optional tools,such as drill, sampler, etc.
    MBARI (ISE) Ventana 1850 Two 7-function manipulators, Schilling Titan3, ISE Magnum 11 cameras, drill, etc.
    SAAB Seaeye Jaguar 6000 one 7-function manipulators, one 4-function manipulators, Schilling Orion 7P, Schilling Orion 4R 2 cameras, optional tools, samplers, etc.
  • Table 4   Several representative underwater operation manipulator
    Manufacturer Product model Vehicle Performance index
    FMC Schiling ORION 7P/7R light-/medium-class ROV 7-function position/rate controlled hydraulic manipulator, weight 54 kg (air)/38 kg (water), standard depth 6500 msw
    FMC Schiling TITAN 4 ultra-heavy work class ROV 7-function position controlled hydraulic manipulator, weight 100 kg (air)/78 kg (weight), standard depth 4000 msw/7000 msw
    FMC Schiling CONAN 7P light-/medium-class ROV 7-function position controlled hydraulic manipulator, weight 107 kg (air)/ 73 kg (water), standard depth 3000 msw
    SAAB Seaeye Hydro-Lek HLK-43000 light-class ROV 5-function manipulator, weight 6 kg (air)/4 kg (water), standard depth 80/160 bar