logo

SCIENTIA SINICA Informationis, Volume 48 , Issue 3 : 233-247(2018) https://doi.org/10.1360/N112017-00253

Crowd behavior simulation based on shadow obstacle and ORCA models

More info
  • ReceivedNov 24, 2017
  • AcceptedDec 12, 2017
  • PublishedMar 16, 2018

Abstract


Funded by

国家自然科学基金(61602175)

国家自然科学基金(61472370)

国家自然科学基金(61672469)

地理信息科学教育部重点实验室基金(KLGIS2015A05)

上海市软件和集成电路产业发展专项资金(150809)

国家重点研究计划(2017YFC0804401)

北京航空航天大学虚拟现实技术与系统国家重点实验室开放课题(BUAA-VR-16KF-07)


References

[1] Nasir F M, Sunar M S. A survey on simulating real-time crowd simulation. In: Proceedings of International Conference on Interactive Digital Media, Bandung, 2016. 1--5. Google Scholar

[2] Xu M L, Jiang H, Jin X G. Crowd Simulation and Its Applications: Recent Advances. J Comput Sci Technol, 2014, 29: 799-811 CrossRef Google Scholar

[3] Alanjari P, Razavialavi S R, Abourizk S. Material and facility layout planning in construction projects using simulation. In: Proceedings of the 2014 Winter Simulation Conference, Savannah, 2014. 3388--3398. Google Scholar

[4] Mitsuhara H, Inoue T, Yamaguchi K, et al. Game-based evacuation drill inside google street view. In: Advances in Human Factors, Business Management, Training and Education. Berlin: Springer, 2017. 655--666. Google Scholar

[5] Veziridis S, Karampelas P, Lekea I. Learn by playing: a serious war game simulation for teaching military ethics. In: Proceedings of IEEE Global Engineering Education Conference, Athens, 2017. 920--925. Google Scholar

[6] Zhang D, Xie Z, Li P, et al. Real-time navigation in dynamic human environments using optimal reciprocal collision avoidance. In: IEEE International Conference on Mechatronics and Automation, Beijing, 2015. 2232--2237. Google Scholar

[7] Helbing D, Molnár P. Social force model for pedestrian dynamics. Phys Rev E, 1995, 51: 4282-4286 CrossRef ADS Google Scholar

[8] Helbing D, Farkas I, Vicsek T. Simulating dynamical features of escape panic.. Nature, 2000, 407: 487-490 CrossRef PubMed Google Scholar

[9] Cui X, Shi H. An overview of pathfinding in navigation mesh. Int J Comput Sci Netw Secur, 2012, 12: 48--51. Google Scholar

[10] Hashimoto K, Yoshimi T, Mizukawa M, et al. A study of collision avoidance between service robot and human at corner-analysis of human behavior at corner. In: Proceedings of International Conference on Ubiquitous Robots and Ambient Intelligence, Jeju, 2013. 383--384. Google Scholar

[11] He G, Jin Y, Chen Q. Shadow obstacle model for realistic corner-turning behavior in crowd simulation. Front Inf Technol Electron Eng, 2016, 17: 200-211 CrossRef Google Scholar

[12] Berg J V D, Guy S, Lin M, et al. Reciprocal n-body collision avoidance. In: Robotics Research. Berlin: Springer, 2011. 3--19. Google Scholar

[13] Zhou S P, Chen D, Cai W T, et al. Crowd modeling and simulation technologies. ACM Trans Model Comput Simulation, 2010, 20: 1--35. Google Scholar

[14] Lakoba T I, Kaup D J, Finkelstein N M. Modifications of the Helbing-Molnár-Farkas-Vicsek Social Force Model for Pedestrian Evolution. SIMULATION, 2005, 81: 339-352 CrossRef Google Scholar

[15] Qu Y C. Modeling evacuation behavior and analyses of dynamic behavior characteristics of crowd. Dissertation for Ph.D. Degree. Beijing: Beijing Jiaotong University, 2015. Google Scholar

[16] Karamouzas I, Overmars M. Simulating and evaluating the local behavior of small pedestrian groups.. IEEE Trans Visual Comput Graphics, 2012, 18: 394-406 CrossRef PubMed Google Scholar

[17] Reynolds C W. Flocks, herds and schools: A distributed behavioral model. SIGGRAPH Comput Graph, 1987, 21: 25-34 CrossRef Google Scholar

[18] Reynolds C W. Steering behaviors for autonomous characters. In: Proceedings of Game Developers Conference, San Francisco, 1999. Google Scholar

[19] Hu Q M, Fang W N, Jia Y Q, et al. Study of crowded environment and cluster behavior simulation. Sci China Ser E-Technol Sci, 2009, 39: 1034--1038. Google Scholar

[20] Pelechano N, Allbeck J M, Badler N I. Controlling individual agents in high-density crowd simulation. In: Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, 2007. 99--108. Google Scholar

[21] Moussaid M, Helbing D, Theraulaz G. How simple rules determine pedestrian behavior and crowd disasters. Proc Natl Acad Sci USA, 2011, 108: 6884-6888 CrossRef PubMed ADS arXiv Google Scholar

[22] Kremyzas A, Jaklin N, Geraerts R. Towards social behavior in virtual-agent navigation. Sci China Inf Sci, 2016, 59: 112102 CrossRef Google Scholar

[23] Berg J V D, Lin M, Manocha D. Reciprocal velocity obstacles for real-time multi-agent navigation. In: Proceedings of IEEE International Conference on Robotics and Automation, Pasadena, 2008. 1928--1935. Google Scholar

[24] Golas A, Narain R, Curtis S. Hybrid Long-Range Collision Avoidance for Crowd Simulation.. IEEE Trans Visual Comput Graphics, 2014, 20: 1022-1034 CrossRef PubMed Google Scholar

[25] Wu Q Q, Ji Q G, Du J H, et al. Simulating the local behavior of small pedestrian groups using synthetic-vision based steering approach. In: Proceedings of the 12th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, Hong Kong, 2013. 41--50. Google Scholar

[26] Jan O. A synthetic-vision based steering approach for crowd simulation. ACM Trans Graph, 2010, 29: 1--9. Google Scholar

[27] Suzuki T, Takahashi M. Obstacle avoidance for autonomous mobile robots based on position prediction using fuzzy inference. In: Proceedings of the International Conference on Informatics in Control, Automation and Robotics, Volume Robotics and Automation, Milan, 2009. 299--304. Google Scholar

[28] Yeh H, Curtis S, Patil S, et al. Composite agents. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Dublin, 2008. 39--47. Google Scholar

[29] Wang H, Xu M, Zhu F. Shadow traffic: A unified model for abnormal traffic behavior simulation. Comput Graphics, 2018, 70: 235-241 CrossRef Google Scholar

[30] Watt A. 3D Computer Graphics. Boston: Addison-Wesley Longman Publishing, 1993. Google Scholar

[31] Snook G. Simplified 3d movement and pathfinding using navigation meshes. In: Game Programming Gems. Hingham: Charles River Media, 2000. 288--304. Google Scholar

[32] Berg J V D, Guy S J, Lin M, et al. Reciprocal n-body collision avoidance. In: Robotics Research. Berlin: Springer, 2011. 3--19. Google Scholar

[33] Hughes R L. The Flow of Human Crowds. Annu Rev Fluid Mech, 2003, 35: 169-182 CrossRef ADS Google Scholar

[34] Reynolds C W. Steering behaviors for autonomous characters. In: Proceedings of Game Developers Conference, San Francisco, 1999. 763--782. Google Scholar

[35] Unity Technologies. Unity user manual. 2017.2-001R. 2017. http://docs.unity3d.com/Manual/class-Character Controłinebreak ller.html. Google Scholar

[36] Guy S J, Kim S, Lin M C, et al. Simulating heterogeneous crowd behaviors using personality trait theory. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Vancouver, 2011. 43--52. Google Scholar

[37] Kang H L, Choi M G, Hong Q, et al. Group behavior from video:a data-driven approach to crowd simulation. In: Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, 2007. 109--118. Google Scholar

[38] Vicsek T, Czirók A, Ben-Jacob E. Novel Type of Phase Transition in a System of Self-Driven Particles. Phys Rev Lett, 1995, 75: 1226-1229 CrossRef PubMed ADS Google Scholar

[39] Greene N. Environment mapping and other applications of world projections. IEEE Comput Graph Appl, 1986, 6: 21--29. Google Scholar