SCIENTIA SINICA Informationis, Volume 48 , Issue 12 : 1622-1633(2018) https://doi.org/10.1360/N112017-00238

Information compression based on principal component analysis: from one-order to higher-order

More info
  • ReceivedNov 13, 2017
  • AcceptedJan 10, 2018
  • PublishedSep 19, 2018









[1] Pearson K. On lines and planes of closest fit to systems of points in space. London Edinburgh Dublin Philos Mag J Sci, 1901, 2559-572 CrossRef Google Scholar

[2] Hotelling H. Analysis of a complex of statistical variables into principal components.. J Educational Psychology, 1933, 24417-441 CrossRef Google Scholar

[3] Anderson T W. Asymptotic Theory for Principal Component Analysis. Ann Math Statist, 1963, 34122-148 CrossRef Google Scholar

[4] Johnstone I M. On the distribution of the largest eigenvalue in principal components analysis. Ann Stat, 2001, 29: 295--327. Google Scholar

[5] Baik J, Ben Arous G, Péché S. Phase transition of the largest eigenvalue for nonnull complex sample covariance matrices. Ann Probab, 2005, 331643-1697 CrossRef Google Scholar

[6] Paul D. Asymptotics of sample eigenstructure for a large dimensional spiked covariance model. Stat Sin, 2007, 17: 1617--1642. Google Scholar

[7] Johnstone I M, Lu A Y. On Consistency and Sparsity for Principal Components Analysis in High Dimensions.. J Am Statistical Association, 2009, 104682-693 CrossRef PubMed Google Scholar

[8] Jung S, Marron J S. PCA consistency in high dimension, low sample size context. Ann Statist, 2009, 374104-4130 CrossRef Google Scholar

[9] Onatski A. Asymptotics of the principal components estimator of large factor models with weakly influential factors. J Econom, 2012, 168244-258 CrossRef Google Scholar

[10] Shen D, Shen H, Zhu H, et al. The statistics and mathematics of high dimension low sample size asymptotics. Stat Sin, 2016, 26: 1747--1770. Google Scholar

[11] Wang W, Fan J. Asymptotics of empirical eigenstructure for high dimensional spiked covariance.. Ann Statist, 2017, 451342-1374 CrossRef PubMed Google Scholar

[12] Jian Yang , Zhang D, Frangi A F. Two-dimensional pca: a new approach to appearance-based face representation and recognition. IEEE Trans Pattern Anal Machine Intell, 2004, 26131-137 CrossRef Google Scholar

[13] Ye J P, Janardan R, Li Q. GPCA: an efficient dimension reduction scheme for image compression and retrieval. In: Proceedings of the 10th ACM Sigkdd International Conference on Knowledge Discovery & Data Mining, Seattle, 2004. 354--363. Google Scholar

[14] Cai D, He X, Han J. Subspace Learning Based on Tensor Analysis. UIUCDCS-R-2005-2572. 2005. Google Scholar

[15] Ye J. Generalized Low Rank Approximations of Matrices. Mach Learn, 2005, 61167-191 CrossRef Google Scholar

[16] Haiping Lu , Plataniotis K N, Venetsanopoulos A N. MPCA: Multilinear Principal Component Analysis of Tensor Objects.. IEEE Trans Neural Netw, 2008, 1918-39 CrossRef PubMed Google Scholar

[17] Zou H, Hastie T, Tibshirani R. Sparse Principal Component Analysis. J Comput Graphical Stat, 2006, 15265-286 CrossRef Google Scholar

[18] Hastie T, Tibshirani R, Wainwright M. Statistical Learning with Sparsity the Lasso and Generalizations. London: Chapman and Hall/CRC, 2015. Google Scholar

[19] Huber P J. Robust Estimation of a Location Parameter. Ann Math Statist, 1964, 3573-101 CrossRef Google Scholar

[20] Huber P J. Robust Regression: Asymptotics, Conjectures and Monte Carlo. Ann Statist, 1973, 1799-821 CrossRef Google Scholar

[21] Chen X R, Zhao L C. M-method in Linear Model. Shanghai: Shanghai Scientific & Techinical Publishers, 1996. Google Scholar

[22] De Torre F. A framework for robust subspace learning. Int J Comput Vision, 2003, 54117-142 CrossRef Google Scholar

[23] Candes E J, Li X, Ma Y, et al. Robust principal component analysis? J ACM, 2011, 58: 1--37. Google Scholar

[24] Nie F, Yuan J, Huang H. Optimal mean robust principal component analysis. In: Proceedings of the 31st International Conference on Machine Learning, Beijing, 2014. Google Scholar

[25] Vu V Q, Lei J. Minimax rates of estimation for sparse PCA in high dimensions. In: Proceedings of the 15th International Conference on Artificial Intelligence and Statistics, La Palma, 2012. 1278--1286. Google Scholar

[26] Shen D, Shen H, Marron J S. Consistency of sparse PCA in High Dimension, Low Sample Size contexts. J Multivariate Anal, 2013, 115317-333 CrossRef Google Scholar

[27] Cai T T, Ma Z, Wu Y. Sparse PCA: Optimal rates and adaptive estimation. Ann Statist, 2013, 413074-3110 CrossRef Google Scholar

[28] Nadler B. Finite sample approximation results for principal component analysis: A matrix perturbation approach. Ann Statist, 2008, 362791-2817 CrossRef Google Scholar

[29] Reiss M, Wahl M. Non-asymptotic upper bounds for the reconstruction error of PCA. 2016,. arXiv Google Scholar

[30] Montanari A, Richard E. Non-Negative Principal Component Analysis: Message Passing Algorithms and Sharp Asymptotics. IEEE Trans Inform Theor, 2016, 621458-1484 CrossRef Google Scholar

[31] Tucker L R. Implications of Factor Analysis of Three-way Matrices for Measurement of Change. Wisconsin: University of Wisconsin Press, 1963. Google Scholar

[32] Levin J. Three-mode factor analysis. Dissertation for Ph.D. Degree. Urbana: University of Illinois, 1963. Google Scholar

[33] Tucker L R. The Extension of Factor Analysis to Three-dimensional Matrices. New York: Springer-Verlag, 1964. Google Scholar

[34] Tucker L R. Some mathematical notes on three-mode factor analysis. Psychometrika, 1966, 31279-311 CrossRef Google Scholar

[35] Kroonenberg P M, de Leeuw J. Principal component analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 1980, 4569-97 CrossRef Google Scholar

[36] Kapteyn A, Neudecker H, Wansbeek T. An approach ton-mode components analysis. Psychometrika, 1986, 51269-275 CrossRef Google Scholar

[37] De Lathauwer L, De Moor B, Vandewalle J. A Multilinear Singular Value Decomposition. SIAM J Matrix Anal Appl, 2000, 211253-1278 CrossRef Google Scholar

[38] Vasilescu M A O, Terzopoulos D. Multilinear analysis of image ensembles: tensor faces. In: Proceedings of the 7th European Conference on Computer Vision. Berlin: Springer, 2002. 447--460. Google Scholar

[39] ten Berge J M F, de Leeuw J, Kroonenberg P M. Some additional results on principal components analysis of three-mode data by means of alternating least squares algorithms. Psychometrika, 1987, 52183-191 CrossRef Google Scholar


Contact and support