SCIENTIA SINICA Informationis, Volume 48 , Issue 4 : 376-389(2018) https://doi.org/10.1360/N112017-00225

A psychological model of human-computer cooperation for the era of artificial intelligence

More info
  • ReceivedNov 5, 2017
  • AcceptedFeb 6, 2018
  • PublishedApr 10, 2018


Funded by








[1] Card S K, Moran T P, Newell A. The Psychology of Human-Computer Interaction. Hillsdale: Lawrence Erlbaum Associates, 1983. Google Scholar

[2] Card S K, Moran T P, Newell A. The model human processor: an engineering model of human performance. In: Handbook of Perception and Human Performance. New York: John Wiley and Sons, 1986. Google Scholar

[3] Chen W F, Zhao G L, Liu Y, et al. Advances in computational models of human cognition in China. In: China Association for Science and Technology, eds. 2012--2013 Report on Advances in Psychology. Beijing: China Science and Technology Press, 2014. 85--100. Google Scholar

[4] Fu X L, Cai L H, Liu Y, et al. A computational cognition model of perception, memory, and judgment. Sci China Inf Sci, 2014, 57: 032114. Google Scholar

[5] Anderson J R, Lebiere C J. The atomic components of thought. J Math Psychol, 1995, 45: 917--923. Google Scholar

[6] Meyer D E, Kieras D E. A computational theory of executive cognitive processes and multiple-task performance: part 1. basic mechanisms. Psychol Rev, 1997, 104: 3--65. Google Scholar

[7] Meyer D E, Kieras D E. A computational theory of executive cognitive processes and multiple-task performance: part 2. accounts of psychological refractory-period phenomena. Psychol Rev, 1997, 104: 749--791. Google Scholar

[8] Hollan J, Hutchins E, Kirsh D. Distributed cognition: toward a new foundation for human-computer interaction research. In: Human-Computer Interaction in the New Millennium. New York: ACM Press, 2001. 75--94. Google Scholar

[9] Zhang J. The Nature of External Representations in Problem Solving. Cognitive Sci, 1997, 21: 179-217 CrossRef Google Scholar

[10] Barsalou L W. Grounded cognition: past, present, and future.. Top Cognitive Sci, 2010, 2: 716-724 CrossRef PubMed Google Scholar

[11] Barsalou L W. Grounded Cognition. Annu Rev Psychol, 2008, 59: 617-645 CrossRef Google Scholar

[12] Ye H S. Embodied cognition: a new approach in cognitive psychology. Adv Psychol Sci, 2010, 18: 705--710. Google Scholar

[13] Barsalou L W, Kyle Simmons W, Barbey A K. Grounding conceptual knowledge in modality-specific systems. Trends Cognitive Sci, 2003, 7: 84-91 CrossRef Google Scholar

[14] Zimmer C. Cognition. How the mind reads other minds.. Science, 2003, 300: 1079-1080 CrossRef PubMed Google Scholar

[15] Atkinson L, Slade L, Powell D. Theory of mind in emerging reading comprehension: A longitudinal study of early indirect and direct effects.. J Exp Child Psychology, 2017, 164: 225-238 CrossRef PubMed Google Scholar

[16] Hergenhahn B R. An Introduction to the History of Psychology. Boston: Brooks/Cole Pub, 1986. Google Scholar

[17] Solso R L, Maclin O H, Maclin M K. Cognitive Psychology. 7th ed. Beijing: Peking University Press, 2005. Google Scholar

[18] Wang S, Wang A S. Cognitive Psychology. Beijing: Peking University Press, 2006. Google Scholar

[19] Gazzaniga M S, Ivry R B, Mangun G R, et al. Cognitive neuroscience: the biology of the mind. New York: W. W. Norton & Company, 2009. Google Scholar

[20] Carlson N R. Foundations of physiological psychology, 6th ed. Am J Psychol, 1980, 80: 653. Google Scholar

[21] Koffka K. Perception: an introduction to the Gestalt-Theorie.. Psychological Bull, 1922, 19: 531-585 CrossRef Google Scholar

[22] Chen L. The topological approach to perceptual organization. Visual Cognition, 2005, 12: 553-637 CrossRef Google Scholar

[23] Marr D, Poggio T, Hildreth E C, et al. A computational theory of human stereo vision. Readings Cogn Sci, 1988, 204: 534--547. Google Scholar

[24] Treisman A M, Gelade G. A feature-integration theory of attention. Cognitive Psychology, 1980, 12: 97-136 CrossRef Google Scholar

[25] Ungerleider L. 'What' and 'where' in the human brain. Curr Opin NeuroBiol, 1994, 4: 157-165 CrossRef Google Scholar

[26] Kanwisher N, McDermott J, Chun M M. The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception. J Neurosci, 1997, 17: 4302-4311 CrossRef Google Scholar

[27] Petersen S E, Posner M I. The attention system of the human brain: 20 years after.. Annu Rev Neurosci, 2012, 35: 73-89 CrossRef PubMed Google Scholar

[28] Broadbent D E. Perception and Communication. Oxford: Pergamon Press, 1958. Google Scholar

[29] Posner M I, Snyder C R, Davidson B J. Attention and the detection of signals.. J Exp Psychology-General, 1980, 109: 160-174 CrossRef Google Scholar

[30] LeDoux J E. Emotion Circuits in the Brain. Annu Rev Neurosci, 2000, 23: 155-184 CrossRef Google Scholar

[31] Baddeley A D. The episodic buffer: a new component of working memory? Trends Cogn Sci, 2000, 4: 417--423. Google Scholar

[32] Baddeley A. Working memory: looking back and looking forward.. Nat Rev Neurosci, 2003, 4: 829-839 CrossRef PubMed Google Scholar

[33] Diamond A. Executive functions.. Annu Rev Psychol, 2013, 64: 135-168 CrossRef PubMed Google Scholar

[34] Chen C C, Wu J K, Lin H W. Visualizing Long-Term Memory Formation in Two Neurons of the Drosophila Brain. Science, 2012, 335: 678-685 CrossRef PubMed ADS Google Scholar

[35] Fell J, Axmacher N. The role of phase synchronization in memory processes.. Nat Rev Neurosci, 2011, 12: 105-118 CrossRef PubMed Google Scholar

[36] Fusi S, Abbott L F. Limits on the memory storage capacity of bounded synapses.. Nat Neurosci, 2007, 10: 485-493 CrossRef PubMed Google Scholar

[37] Eichenbaum H. A cortical-hippocampal system for declarative memory.. Nat Rev Neurosci, 2000, 1: 41-50 CrossRef PubMed Google Scholar

[38] Frankland P W, Bontempi B. The organization of recent and remote memories. Nat Rev Neurosci, 2005, 6: 119--130. Google Scholar

[39] Nadel L, Hardt O. Update on memory systems and processes.. Neuropsychopharmacol, 2011, 36: 251-273 CrossRef PubMed Google Scholar

[40] McGaugh J L. Memory-a Century of Consolidation. Science, 2000, 287: 248-251 CrossRef ADS Google Scholar

[41] Miranda M, Bekinschtein P. Plasticity Mechanisms of Memory Consolidation and Reconsolidation in the Perirhinal Cortex.. Neuroscience, 2018, 370: 46-61 CrossRef PubMed Google Scholar

[42] Tronson N C, Taylor J R. Molecular mechanisms of memory reconsolidation.. Nat Rev Neurosci, 2007, 8: 262-275 CrossRef PubMed Google Scholar

[43] Edelson M, Sharot T, Dolan R J. Following the Crowd: Brain Substrates of Long-Term Memory Conformity. Science, 2011, 333: 108-111 CrossRef PubMed ADS Google Scholar

[44] Nader K, Hardt O. A single standard for memory: the case for reconsolidation. Nat Rev Neurosci, 2009, 10: 224--234. Google Scholar

[45] Delaney P F, Ericsson K A. Long-term working memory and transient storage in reading comprehension: what is the evidence? comment on Foroughi, Werner, Barragán, and Boehm-Davis (2015). J Exp Psychol Gen, 2016, 145: 1406--1409. Google Scholar

[46] Klein S B, Cosmides L, Tooby J. Decisions and the evolution of memory: Multiple systems, multiple functions.. Psychological Rev, 2002, 109: 306-329 CrossRef Google Scholar

[47] Bi L Z, Shang J X, Gan G D. Modeling driver lane changing control with the queuing network-model human processor. In: Proceedings of International Conference on Machine Learning and Cybernetics, Xi'an, 2012. 830--834. Google Scholar

[48] Sadeghipour A, Kopp S. Gesture processing as grounded motor cognition: towards a computational model. Procedia Soc Behav Sci, 2012 32: 213--223. Google Scholar

[49] Andresen D R, Marsolek C J. Effector-independent and effector-dependent sequence representations underlie general and specific perceptuomotor sequence learning.. J Motor Behav, 2012, 44: 53-61 CrossRef PubMed Google Scholar

[50] Mattys S L. Stress versus coarticulation: toward an integrated approach to explicit speech segmentation.. J Exp Psychology-Human Perception Performance, 2004, 30: 397-408 CrossRef PubMed Google Scholar

[51] Shea C H, Kovacs A J, Panzer S. The coding and inter-manual transfer of movement sequences. Front Psychol, 2011, 2: 52. Google Scholar

[52] Verwey W B, Shea C H, Wright D L. A cognitive framework for explaining serial processing and sequence execution strategies.. Psychon Bull Rev, 2015, 22: 54-77 CrossRef PubMed Google Scholar

[53] Bo J, Seidler R D. Visuospatial working memory capacity predicts the organization of acquired explicit motor sequences.. J NeuroPhysiol, 2009, 101: 3116-3125 CrossRef PubMed Google Scholar

[54] Verwey W B. Diminished motor skill development in elderly: indications for limited motor chunk use.. Acta Psychologica, 2010, 134: 206-214 CrossRef PubMed Google Scholar

[55] Ruitenberg M F L, Abrahamse E L, De Kleine E. Context-dependent motor skill: perceptual processing in memory-based sequence production.. Exp Brain Res, 2012, 222: 31-40 CrossRef PubMed Google Scholar

[56] Rosenbaum D A. Human movement initiation: Specification of arm, direction, and extent.. J Exp Psychology-General, 1980, 109: 444-474 CrossRef Google Scholar

[57] Hommel B, Müsseler J, Aschersleben G. The Theory of Event Coding (TEC): A framework for perception and action planning. Behav Brain Sci, 2001, 24: 849-878 CrossRef Google Scholar

[58] Lien M C, Mccann R S, Ruthruff E, et al. Dual-task performance with ideomotor-compatible tasks: is the central processing bottleneck intact, bypassed, or shifted in locus? J Exp Psychol Hum Perc Perform, 2005, 31: 122--144. Google Scholar