References
[1]
Krizhenvsky A, Sutskever I, Hinton G. ImageNet classificaiton with deep convolutional neural networks. In: Proceedings of the 25th Advances in Neural Information Processing Systems, Lake Tahoe, 2012. 1097--1105.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Krizhenvsky A, Sutskever I, Hinton G. ImageNet classificaiton with deep convolutional neural networks. In: Proceedings of the 25th Advances in Neural Information Processing Systems, Lake Tahoe, 2012. 1097--1105&
[2]
Lecun
Y,
Bottou
L,
Bengio
Y.
Gradient-based learning applied to document recognition.
Proc IEEE,
1998, 86: 2278-2324
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gradient-based learning applied to document recognition&author=Lecun Y&author=Bottou L&author=Bengio Y&publication_year=1998&journal=Proc IEEE&volume=86&pages=2278-2324
[3]
He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016. 770--778.
Google Scholar
http://scholar.google.com/scholar_lookup?title=He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016. 770--778&
[4]
Sun C, Shrivastava A, Singh S, et al. Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the International Conference on Computer Vision, Venice, 2017. 843--852.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun C, Shrivastava A, Singh S, et al. Revisiting unreasonable effectiveness of data in deep learning era. In: Proceedings of the International Conference on Computer Vision, Venice, 2017. 843--852&
[5]
Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition,.
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition,&
[6]
Kokkinos I. UberNet: training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Hawaii, 2017. 6129--6138.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kokkinos I. UberNet: training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Hawaii, 2017. 6129--6138&
[7]
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. In: Proceedings of the 27th Advances in Neural Information Processing Systems, Montreal, 2014. 2672--2680.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets. In: Proceedings of the 27th Advances in Neural Information Processing Systems, Montreal, 2014. 2672--2680&
[8]
Shrivastava A, Pfister T, Tuzel O, et al. Learning from simulated and unsupervised images through adversarial training. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Hawaii, 2017. 2107--2116.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shrivastava A, Pfister T, Tuzel O, et al. Learning from simulated and unsupervised images through adversarial training. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Hawaii, 2017. 2107--2116&
[9]
Russakovsky
O,
Deng
J,
Su
H.
ImageNet Large Scale Visual Recognition Challenge.
Int J Comput Vis,
2015, 115: 211-252
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=ImageNet Large Scale Visual Recognition Challenge&author=Russakovsky O&author=Deng J&author=Su H&publication_year=2015&journal=Int J Comput Vis&volume=115&pages=211-252
[10]
Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the 28th Advances in Neural Information Processing Systems, Montreal, 2015. 91--99.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ren S Q, He K M, Girshick R, et al. Faster R-CNN: towards real-time object detection with region proposal networks. In: Proceedings of the 28th Advances in Neural Information Processing Systems, Montreal, 2015. 91--99&
[11]
Shelhamer
E,
Long
J,
Darrell
T.
Fully Convolutional Networks for Semantic Segmentation..
IEEE Trans Pattern Anal Mach Intell,
2017, 39: 640-651
CrossRef
PubMed
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fully Convolutional Networks for Semantic Segmentation.&author=Shelhamer E&author=Long J&author=Darrell T&publication_year=2017&journal=IEEE Trans Pattern Anal Mach Intell&volume=39&pages=640-651
[12]
Wei
X S,
Luo
J H,
Wu
J.
Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval.
IEEE Trans Image Process,
2017, 26: 2868-2881
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval&author=Wei X S&author=Luo J H&author=Wu J&publication_year=2017&journal=IEEE Trans Image Process&volume=26&pages=2868-2881
[13]
Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision, Zurich, 2014. 8689: 818--833.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zeiler M D, Fergus R. Visualizing and understanding convolutional networks. In: Proceedings of the European Conference on Computer Vision, Zurich, 2014. 8689: 818--833&
[14]
Krause J, Sapp B, Howard A, et al. The unreasonable effectivenss of noisy data for fine-grained recognition. In: Proceedings of the European Conference on Computer Vision, Amsterdam, 2016. 9907: 301--320.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Krause J, Sapp B, Howard A, et al. The unreasonable effectivenss of noisy data for fine-grained recognition. In: Proceedings of the European Conference on Computer Vision, Amsterdam, 2016. 9907: 301--320&
[15]
Zhu X, Goldberg A B. Introduction to Semi-Supervised Learning. San Rafael: Morgan & Claypool Publishers LLC, 2009.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhu X, Goldberg A B. Introduction to Semi-Supervised Learning. San Rafael: Morgan & Claypool Publishers LLC, 2009&
[16]
Rasmus A, Valpola H, Honkala M, et al. Semi-supervised learning with ladder networks. In: Proceedings of the Advances in Neural Information Processing Systems 28, Montreal, 2015. 3546--3554.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rasmus A, Valpola H, Honkala M, et al. Semi-supervised learning with ladder networks. In: Proceedings of the Advances in Neural Information Processing Systems 28, Montreal, 2015. 3546--3554&
[17]
Laine S, Aila T. Temporal ensembling for semi-supervised leanring. In: Proceedings of the International Conference on Learning Representations, Toulon, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Laine S, Aila T. Temporal ensembling for semi-supervised leanring. In: Proceedings of the International Conference on Learning Representations, Toulon, 2017&
[18]
Wei X-S, Zhang C-L, Li Y, et al. Deep descriptor transforming for image co-localization. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, 2017. 3048--3054.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wei X-S, Zhang C-L, Li Y, et al. Deep descriptor transforming for image co-localization. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, 2017. 3048--3054&
[19]
Gao
B B,
Xing
C,
Xie
C W.
Deep Label Distribution Learning With Label Ambiguity.
IEEE Trans Image Process,
2017, 26: 2825-2838
CrossRef
PubMed
ADS
arXiv
Google Scholar
http://scholar.google.com/scholar_lookup?title=Deep Label Distribution Learning With Label Ambiguity&author=Gao B B&author=Xing C&author=Xie C W&publication_year=2017&journal=IEEE Trans Image Process&volume=26&pages=2825-2838
[20]
Geng
X.
Label Distribution Learning.
IEEE Trans Knowl Data Eng,
2016, 28: 1734-1748
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Label Distribution Learning&author=Geng X&publication_year=2016&journal=IEEE Trans Knowl Data Eng&volume=28&pages=1734-1748
[21]
Rastegari M, Ordonez V, Redmon J, et al. XNOR-Net: imageNet classification using binary convolutional neural networks. In: Proceedings of the European Conference on Computer Vision, Amsterdam, 2016, 9908: 525--542.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rastegari M, Ordonez V, Redmon J, et al. XNOR-Net: imageNet classification using binary convolutional neural networks. In: Proceedings of the European Conference on Computer Vision, Amsterdam, 2016, 9908: 525--542&
[22]
Wu J X, Leng C, Wang Y H, et al. Quantized convolutional neural networks for mobile devices. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016. 4820--4828.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wu J X, Leng C, Wang Y H, et al. Quantized convolutional neural networks for mobile devices. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016. 4820--4828&
[23]
Han S, Pool J, Tran J, et al. Learning both weights and connections for efficient neural network. In: Proceedigns of the Advances in Neural Information Processing Systems 28, Montreal, 2015. 1135--1143.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Han S, Pool J, Tran J, et al. Learning both weights and connections for efficient neural network. In: Proceedigns of the Advances in Neural Information Processing Systems 28, Montreal, 2015. 1135--1143&
[24]
Xie S, Girshick R, Dollar P, et al. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Hawaii, 2017. 1492--1500.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xie S, Girshick R, Dollar P, et al. Aggregated residual transformations for deep neural networks. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Hawaii, 2017. 1492--1500&
[25]
Luo J-H, Wu J X, Lin W. ThiNet: a filter level pruning method for deep neural network compression. In: Proceedings of the International Conference on Computer Vision, Venice, 2017. 5058--5066.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Luo J-H, Wu J X, Lin W. ThiNet: a filter level pruning method for deep neural network compression. In: Proceedings of the International Conference on Computer Vision, Venice, 2017. 5058--5066&
[26]
He Y H, Zhang X Y, Sun J. Channel pruning for accelerating very deep neural networks. In: Proceedings of the International Conference on Computer Vision, Venice, 2017. 1389--1397.
Google Scholar
http://scholar.google.com/scholar_lookup?title=He Y H, Zhang X Y, Sun J. Channel pruning for accelerating very deep neural networks. In: Proceedings of the International Conference on Computer Vision, Venice, 2017. 1389--1397&
[27]
Liu Z, Li J G, Shen Z Q, et al. Learning efficient convolutional networks through network slimming. In: Proceedings of the International Conference on Computer Vision, Venice, 2017. 2736--2744.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu Z, Li J G, Shen Z Q, et al. Learning efficient convolutional networks through network slimming. In: Proceedings of the International Conference on Computer Vision, Venice, 2017. 2736--2744&
[28]
Li H, Kadav A, Durdanovic I, et al. Pruning filters for efficient ConvNets. In: Proceedings of the International Conference on Learning Representations, Toulon, 2017.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li H, Kadav A, Durdanovic I, et al. Pruning filters for efficient ConvNets. In: Proceedings of the International Conference on Learning Representations, Toulon, 2017&