logo

SCIENTIA SINICA Informationis, Volume 48 , Issue 3 : 293-314(2018) https://doi.org/10.1360/N112017-00203

An overview of software-defined network measurement technologies

More info
  • ReceivedOct 25, 2017
  • AcceptedFeb 28, 2018
  • PublishedMar 16, 2018

Abstract


Funded by

国家自然科学基金(61379145)

国家自然科学基金(61702539)


Acknowledgment

感谢审稿专家的中肯建议及编委的辛勤工作


References

[1] Kreutz D, Ramos F M V, Esteves Verissimo P, et al. Software-defined networking: a comprehensive survey. Proc IEEE, 2014, 103: 10--13. Google Scholar

[2] Cai Z P, Yin J P, Liu F, et al. Efficiently monitoring link bandwidth in IP networks. In: Proceedings of IEEE Global Telecommunications Conference, St. Louis, 2005. Google Scholar

[3] Yan X C, Yin J P, Cai Z P. Survey on network topology discovery algorithm. Comput Eng Appl, 2007, 43: 131--135. Google Scholar

[4] Tsai P W, Hsu C Y, Luo M Y. On the Implementation of Adaptive Flow Measurement in the SDN-enabled Network: A Prototype. APAN Proc, 2015, 40: 7 CrossRef Google Scholar

[5] Akyildiz I F, Lee A, Wang P, et al. A roadmap for traffic engineering in SDN-OpenFlow networks. Int J Comput Telecommun Netw, 2014, 71: 1--30. Google Scholar

[6] Zhou T Q, Cai Z P, Xia J, et al. Traffic engineering for software defined networks. J Softw, 2016, 27: 394--417. Google Scholar

[7] Nunes B A A, Mendonca M, Nguyen X N. A Survey of Software-Defined Networking: Past, Present, and Future of Programmable Networks. IEEE Commun Surv Tutorials, 2014, 16: 1617-1634 CrossRef Google Scholar

[8] Karakus M, Durresi A. Quality of Service (QoS) in Software Defined Networking (SDN): A survey. J Network Comput Appl, 2017, 80: 200-218 CrossRef Google Scholar

[9] Cai Z P. Network measurement technologies, models and algorithms based on active and passive measurement. Dissertation for Ph.D. Degree. Changsha: National University of Defense Technology, 2005. Google Scholar

[10] Yu C, Lumezanu C, Sharma A, et al. Software-defined latency monitoring in data center networks. In: Proceedings of Software-defined Latency Monitoring in Data Center Networks, New York, 2015. 360--372. Google Scholar

[11] Adrichem N L M V, Doerr C, Kuipers F A. OpenNetMon: network monitoring in OpenFlow software-defined networks. In: Proceedings of IEEE Network Operations and Management Symposium, Krakow, 2014. Google Scholar

[12] Sinha D, Haribabu K, Balasubramaniam S. Real-time monitoring of network latency in software defined networks. In: Proceedings of IEEE International Conference on Advanced Networks and Telecommuncations Systems, Kolkata, 2015. Google Scholar

[13] Atary A, Bremler-Barr A. Efficient round-trip time monitoring in OpenFlow networks. In: Proceedings of the 35th Annual IEEE International Conference on Computer Communications, San Francisco, 2016. Google Scholar

[14] Nguyen H N, Begin T, Busson A, et al. Evaluation of an end-to-end delay estimation in the case of multiple flows in SDN networks. In: Proceeding of the 12th International Conference on Network and Service Management, Montreal, 2017. 336--341. Google Scholar

[15] Panwaree P, Kim J, Aswakul C. Packet delay and loss performance of streaming video over emulated and real OpenFlow networks. In: Proceedings of the 29th International Technical Conference on Circuit/Systems Computers and Communications, At Phuket, 2014. Google Scholar

[16] Fu C, John W, Meirosu C. EPLE: an efficient passive lightweight estimator for SDN packet loss measurement. In: Proceedings of IEEE Conference on Network Function Virtualization and Software Defined Networks, Palo Alto, 2017. 192--198. Google Scholar

[17] John W, Meirosu C. Low-overhead packet loss and one-way delay measurements in service provider SDN. ONS, 2014. http://www.usenix.org/sites/default/files/ons2014-poster-john.pdf. Google Scholar

[18] Li Y, Miao R, Kim C, et al. LossRadar: fast detection of lost packets in data center networks. In: Proceedings of the 12th International on Conference on Emerging Networking Experiments and Technologies, Irvine, 2016. 481--495. Google Scholar

[19] Cheng P, Ren F Y, Shu R, et al. Catch the whole lot in an action: rapid precise packet loss notification in data centers. In: Proceedings of the 11th USENIX Conference on Networked Systems Design and Implementation, Seattle, 2014. 17--28. Google Scholar

[20] Chan Edmond W W, Chen A, Luo X P, et al. TRIO: measuring asymmetric capacity with three minimum round-trip times. In: Proceedings of the 7th Conference on Emerging Networking Experiments and Technologies, Tokyo, 2011. Google Scholar

[21] John W, Meirosu C. Low-overhead packet loss and one-way delay measurements in service provider SDN. ONS, 2014. http://www.sjalander.com/wolfgang/publications/ons2014-poster-john.pdf. Google Scholar

[22] Sezer S, Scott-Hayward S, Chouhan P K, et al. Are we ready for SDN? implementation challenges for software-defined networks. IEEE Commun Mag, 2013, 51: 36--43. Google Scholar

[23] Yassine A, Rahimi H, Shirmohammadi S. Software defined network traffic measurement: current trends and challenges. IEEE Instrum Meas Mag, 2015, 18: 42--50. Google Scholar

[24] Tootoonchian A, Ghobadi M, Ganjali Y. OpenTM: traffic matrix estimator for OpenFlow networks. In: Proceedings of the 11th International Conference on Passive and Active Measurement, Zurich, 2010. 201--210. Google Scholar

[25] Chowdhury S R, Bari M F, Ahmed R, et al. Payless: a low cost network monitoring framework for software defined networks. In: Proceedings of IEEE Network Operations and Management Symposium, Ahmed, 2014. Google Scholar

[26] Rasley J, Stephens B, Dixon C, et al. Planck: millisecond-scale monitoring and control for commodity networks. In: Proceedings of the 2014 ACM Conference on SIGCOMM, Chicago, 2014. Google Scholar

[27] Sekar V, Reiter M K, Willinger W, et al. cSamp: a system for network-wide flow monitoring. 2008. https://www.usenix.org/legacy/event/nsdi08/tech/full_papers/sekar/sekar_html/. Google Scholar

[28] Yu C, Lumezanu C, Zhang Y P, et al. Flowsense: monitoring network utilization with zero measurement cost. In: Proceedings of International Conference on Passive and Active Network Measurement, Hong Kong, 2013. Google Scholar

[29] Benson T, Anand A, Akella A, et al. MicroTE: fine grained traffic engineering for data centers. In: Proceedings of the 7th Conference on Emerging Networking Experiments and Technologies, Tokyo, 2011. Google Scholar

[30] Suh Junho, Kwon T T, Dixon C, et al. Opensample: a low-latency, sampling-based measurement platform for commodity SDN. In: Proceedings of the 34th International Conference on Distributed Computing Systems, Madrid, 2014. Google Scholar

[31] Yu M, Jose L, Miao R. Software defined traffic measurement with OpenSketch. In: Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementation, Lombard, 2013. Google Scholar

[32] Charikar M, Chen K, Farach-Colton M. Finding frequent items in data streams. In: Proceedings of International Colloquium on Automata, Languages, and Programming, Turku, 2004. Google Scholar

[33] Cormode G, Muthukrishnan S. What's new: finding significant differences in network data streams. IEEE/ACM Trans Networking, 2005, 13: 1219-1232 CrossRef Google Scholar

[34] Li Y L, Miao R, Kim C, et al. FlowRadar: a better netflow for data centers. In: Proceedings of the 13th Usenix Conference on Networked Systems Design and Implementation, Santa, 2016. Google Scholar

[35] Liu Z X, Manousis A, Vorsanger G, et al. One sketch to rule them all: rethinking network flow monitoring with UnivMon. In: Proceedings of the 2016 ACM Conference on SIGCOMM, Florianopolis, 2016. Google Scholar

[36] Schweller R, Li Z, Chen Y. Reversible Sketches: Enabling Monitoring and Analysis Over High-Speed Data Streams. IEEE/ACM Trans Networking, 2007, 15: 1059-1072 CrossRef Google Scholar

[37] Huang Q, Jin X, Lee P P C, et al. SketchVisor: robust network measurement for software packet processing. In: Proceedings of the Conference of the ACM Special Interest Group on Data Communication, Los Angeles, 2017. Google Scholar

[38] Alipourfard O, Moshref M, Yu M L. Re-evaluating measurement algorithms in software. In: Proceedings of the 14th ACM Workshop on Hot Topics in Networks, Philadelphia, 2015. Google Scholar

[39] Moshref M, Yu M L, Govindan R, et al. DREAM: dynamic resource allocation for software-defined measurement. In: Proceedings of the 2014 ACM Conference on SIGCOMM, Chicago, 2014. Google Scholar

[40] Sun P, Yu M, Freedman M J. HONE: Joint Host-Network Traffic Management in Software-Defined Networks. J Netw Syst Manage, 2015, 23: 374-399 CrossRef Google Scholar

[41] Xu H, Yu Z, Qian C. Minimizing Flow Statistics Collection Cost Using Wildcard-Based Requests in SDNs. IEEE/ACM Trans Networking, 2017, 25: 3587-3601 CrossRef Google Scholar

[42] Bahnasy M, Idoudi K, Elbiaze H. OpenFlow and GMPLS Unified Control Planes: Testbed Implementation and Comparative Study. J Opt Commun Netw, 2015, 7: 301-308 CrossRef Google Scholar

[43] Yonghong F, Jun B, Jianping W. A dormant multi-controller model for software defined networking. China Commun, 2014, 11: 45-55 CrossRef Google Scholar

[44] Wang J L, Shou G C, Hu Y H, et al. A multi-domain SDN scalability architecture implementation based on the coordinate controller. In: Proceedings of International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery, Chengdu, 2016. Google Scholar

[45] Liu C, Malboubi A, Chuah C N. OpenMeasure: adaptive flow measurement inference with online learning in SDN. In: Proceedings of IEEE Conference on Computer Communications Workshops, San Francisco, 2016. Google Scholar

[46] Farshad A, Georgopoulos P, Broadbent M, et al. Leveraging SDN to provide an in-network QoE measurement framework. In: Proceedings of IEEE Conference on Computer Communications Workshops, Hong Kong, 2015. Google Scholar

[47] Dacier M C, Dietrich S, Kargl F, et al. Network attack detection and defense — security challenges and opportunities of software-defined networking. Dagstuhl Rep, 2017, 6: 1--28. Google Scholar

[48] Saxena M, Rakesh K. A recent trends in software defined networking (SDN) security. In: Proceedings of the 3rd International Conference on Computing for Sustainable Global Development, New Delhi, 2016. Google Scholar

[49] Hong D K, Ma Y D, Banerjee S, et al. Incremental deployment of SDN in hybrid enterprise and ISP networks. In: Proceedings of the Symposium on SDN Research, Santa Clara, 2016. Google Scholar

[50] Canini M, Feldmann A, Levin D, et al. Panopticon: incremental deployment of software-defined networking. ACM Symposium on SDN Research, 2016. https://www.opennetworking.org/images/stories/downloads/sdn-resources/IEEE-papers/panopticon-incremental-deplyment-of-sdn.pdf. Google Scholar

  • Figure 1

    Research on SDN measurement classification

  • Figure 2

    Measurement phases on GRAMI technology

  • Figure 3

    Example of RTT measurement technology

  • Figure 4

    (Color online) Packet loss measurement of EPLE. MEP is the abbreviation of measurement end point, MIP is the abbreviation of measurement installation point

  • Figure 5

    (Color online) Structure design of LossRadar measurement

  • Figure 6

    (Color online) Structure of SketchVisor measurement

  • Figure 7

    (Color online) Framework of DREAM traffic measurement system

  • Figure 8

    Framework of HONE traffic measurement system

  • Table 1   Comparison of SDN network performance measurement technologies
    名称 测量对象 测量方式 技术特点 优缺点分析
    SLAM [10] 延迟 主动 充分利用OpenFlow协议功能,不需要对硬件进行额外设计与支持.测量准确性与开销成正相关. 测量思路简单新颖,在可能影响延迟测量结果准确性方面考虑不足,例如控制链路延迟的具体测法.
    TTL-based looping [12] 主动 利用TTL作为控制参数控制数据包的循环次数,从而获取链路的平均延迟. 思路清晰,实现难度较小.但测量结果的准确性和时效性不高,只能满足一般网络应用.
    GRAMI [13] 主动 预设测量点MP,计算覆盖网络(overlay network),实现网络中任意节点间延迟测量. 需要设计高效的MP选择算法,优化overlay计算效率,测量结果准确性高,但其网络故障恢复能力较弱,耗时较长.
    End-to-End Multiflow delay [14] 主动 计算路径上每段链路延迟并求和,获取端到端延迟. 通过严格的数学公式推导,得出期望与方差的数学关系,测量结果准确性高.对网络设备的计算性能要求很高,适用范围较小.
    EPLE [16,17] 丢包 被动 基于OpenFlow协议实现丢包检测.引入零探测流量,适用与轻量级的丢包测量. 测量开销为零,计算处理开销仅增加了4%$\sim$9%,内存开销仅增加了1.5%$\sim$3%.
    LossRadar [18] 主动 采用invertible Bloom filter编码方式减少内存资源占用,同时能根据需要灵活地提取丢包相关的流的信息. 测量方式简单,测量结果误差小.测量策略灵活,可按需获取出现丢包的流的相关信息.
    CP [19] 主动 改变传统丢包方式,只丢弃数据部分,报文头保留,以获得更好的测量结果. 测量方式新颖,缓冲区分块,以存放待转发数据包以及丢弃数据内容后的数据包头.对丢包信息的回传也可在一定程度上保护网络性能.
    ABWM [21,22] 带宽 被动 测量思想基于已有可用带宽测量的改进,适用于SDN网络架构. 测量前提是网络中每条链路带宽已知,且背景流波动在可控范围之内,测量条件较为理想,据实际应用还有差距.
    OpenNetMon [11]

    延迟

    丢包

    带宽

    主动 OpenNetMon的测量内容涵盖了延迟、丢包、带宽等主要网络性能指标,测量方案的设计思路具有创新性、灵活度高、扩展性好. 测量方法简单有效,测量结果的准确性和实时性相对较高.
  • Table 2   Comparison of SDN Traffic measurement technologies
    名称 测量对象 测量方式 技术特点 优缺点分析
    OpenTM [24]

    字节数

    持续时间

    主动 固定频率向交换机请求流的统计数据. 采样节点选取方式较主观,对测量结果有影响.结果准确性与开销成正相关.
    SketchVisor [37]

    流量速率

    数据包数

    链路利用率

    主动 提供快速通路实现高速流量处理性能. 克服Sketch设计本身缺陷,提高高速网络下流量处理的效率.测量结果的准确性相对下降,同时在流量分流的处理上,缺少灵活性,主动选择能力不足.
    PayLess [25] 主动 自适应频率对流信息进行采样. 根据应用具体需求和当前网络流量状态,动态调整对流的采样频率,减少了网络开销.
    Planck [26] 主动 利用商用交换机端口镜像功能,对流入流量进行备份并分析. 可对网络流进行全方位分析,结果可靠准确.但对端口处理性能要求高.需要考虑突发流情况下,端口的缓冲和应对机制.
    FlowSense [28] 被动 基于OpenFlow协议改进的流量测量技术. 测量结果准确,测量开销较低,适用与小流检测,在大流测量方面实时性不高.
    MicroTE [29] 被动 适用于小流检测,可提前感知流量突发情况,并提供重路由方案. 测量开销低,扩展性能强,需要对硬件升级,普及成本较高,不利于市场推广.
    OpenSample [30] 被动 适用于任意TCP流的检测,对Elephant流检测结果较理想. 改进sFlow采样技术,测量效率和延迟均得到有效降低,同时Elephant流检测具有较高市场价值.