logo

SCIENTIA SINICA Informationis, Volume 49 , Issue 6 : 760-774(2019) https://doi.org/10.1360/N112017-00202

${\mathcal{L}}_{1}$ adaptive control augmentation for a six-degree-of-freedom hypersonic vehicle model

More info
  • ReceivedOct 18, 2017
  • AcceptedMar 13, 2018
  • PublishedJun 6, 2019

Abstract


Supplement

补充材料包括以下内容: (1) 高超音速飞行器动力学模型主要变量及参数表; (2) 仿真试验情形III, V及VI中的跟踪误差曲线及控制输入图线; (3) 试验情形I中高超音速飞行器的三维运动轨迹; (4) 各仿真试验中控制方案性能指标的比较.


References

[1] Hallion R. The history of hypersonics: or, `back to the future: again and again'. In: Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, 2005. Google Scholar

[2] Tang M, Chase R. The quest for hypersonic flight with air-breathing propulsion. In: Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, 2008. Google Scholar

[3] Echols J A, Puttannaiah K, Mondal K, et al. Fundamental control system design issues for scramjet-powered hypersonic vehicles. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, Kissimmee, 2015. Google Scholar

[4] National Research Council (U.S.). Committee on Hypersonic Technology for Military Application. Hypersonic Technology for Military Application. Washington: National Academy Press, 1989. Google Scholar

[5] Snell S A, Nns D F, Arrard W L. Nonlinear inversion flight control for a supermaneuverable aircraft. J Guid Control Dyn, 1992, 15: 976--984. Google Scholar

[6] Lee H, Reiman S, Dillon C, et al. Robust nonlinear dynamic inversion control for a hypersonic cruise vehicle. In: Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, 2007. Google Scholar

[7] Wang P, Tang G J, Wu J. Sliding mode decoupling control of a generic hypersonic vehicle based on parametric commands. Sci China Inf Sci, 2015, 58: 052202 CrossRef Google Scholar

[8] Xu H J, Mirmirani M D, Ioannou P A. Adaptive sliding mode control design for a hypersonic flight vehicle. J Guid Control Dyn, 2004, 27: 829-838 CrossRef ADS Google Scholar

[9] Pu Z Q, Yuan R Y, Tan X M. Active robust control of uncertainty and flexibility suppression for air-breathing hypersonic vehicles. Aerospace Sci Tech, 2015, 42: 429-441 CrossRef Google Scholar

[10] Fiorentini L, Serrani A, Bolender M A. Nonlinear robust adaptive control of flexible air-breathing hypersonic vehicles. J Guid Control Dyn, 2009, 32: 402-417 CrossRef ADS Google Scholar

[11] Sun H B, Li S H, Sun C Y. Finite time integral sliding mode control of hypersonic vehicles. Nonlinear Dyn, 2013, 73: 229-244 CrossRef Google Scholar

[12] Poderico M, Morani G, Sollazzo A, et al. Fault-tolerant control laws against sensors failures for hypersonic flight. In: Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference, Tours, 2012. Google Scholar

[13] Hellmundt F, Wildschek A, Maier R, et al. Comparison of ${\mathcal{L}}_{1}$ adaptive augmentation strategies for a differential PI baseline controller on a longitudinal F16 aircraft model. In: Advances in Aerospace Guidance, Navigation and Control. Berlin: Springer, 2015. 99--118. Google Scholar

[14] Hovakimyan N, Cao C Y. ${\mathcal{L}}_{1}$ Adaptive Control Theory: Guaranteed Robustness with Fast Adaptation. Philadelphia: Society for Industrial and Applied Mathematics, 2010. Google Scholar

[15] Lei Y, Cao C Y, Cliff E, et al. Design of an ${\mathcal{L}}_{1}$ adaptive controller for air-breathing hypersonic vehicle model in the presence of unmodeled dynamics. In: Proceedings of AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, 2007. Google Scholar

[16] Prime Z, Doolan C, Cazzolato B. Longitudinal ${\mathcal{L}}_{1}$ adaptive control of a hypersonic re-entry experiment. In: Proceedings of the 15th Australian International Aerospace Congress, Melbourne, 2013. 717--726. Google Scholar

[17] Banerjee S, Wang Z, Baur B. L1 adaptive control augmentation for the longitudinal dynamics of a hypersonic glider. J Guid Control Dyn, 2016, 39: 275-291 CrossRef ADS Google Scholar

[18] Heller M, Holzapfel F, Sachs G. Robust lateral control of hypersonic vehicles. In: Proceedings of the 18th Applied Aerodynamics Conference, Denver, 2000. Google Scholar

[19] Mooij E. Adaptive lateral flight control for a winged re-entry vehicle. In: Proceedings of AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, 2003. Google Scholar

[20] Daniel P W, Anuradha M A, Jonathan A M, et al. Adaptive control of a generic hypersonic vehicle. In: Proceedings of AIAA Guidance, Navigation, and Control Conference, Boston, 2013. Google Scholar

[21] Banerjee S, Boyce R, Wang Z J. L1 augmented controller for a lateral/directional maneuver of a hypersonic glider. J Aircraft, 2017, 54: 1257-1267 CrossRef Google Scholar

[22] Piao M N, Zhu K, Sun M W, et al. A unified angle control scheme for hypersonic vehicle based on disturbance rejection. In: Proceedings of AIAA International Space Planes and Hypersonics Technologies Conference, Xiamen, 2017. Google Scholar

[23] Colgren R, Keshmiri S, Mirmirani M. Nonlinear ten-degree-of-freedom dynamics model of a generic hypersonic vehicle. J Aircraft, 2009, 46: 800-813 CrossRef Google Scholar

[24] Stevens B L, Lewis F L, Johnson E N. Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems. Hoboken: John Wiley and Sons, 2016. Google Scholar

[25] Mahmoud M S, Xia Y Q. Applied Control Systems Design. Berlin: Springer, 2012. Google Scholar

[26] Skogestad S, Postlethwaite I. Multivariable Feedback Control: Analysis and Design. Hoboken: John Wiley and Sons, 2005. Google Scholar

  • Figure 1

    Conceptual block diagram of the proposed control scheme

  • Figure 2

    Reference trajectories. (a) $V_r$, (b) $\phi_r$, (c) $\theta_r$, and (d) $\psi_r$

  • Figure 3

    Tracking performance in test case I. (a) $V$, (b) $\phi$, (c) $\theta$, and (d) $\psi$ tracking

  • Figure 4

    Control inputs in test case I. (a) PLA, (b) $\delta_a$, (c) $\delta_e$, and (d) $\delta_r$

  • Figure 5

    Tracking performance in test case II. (a) $V$ and (b) $\phi$ tracking

  • Figure 6

    Tracking performance in test case II. (a) $\theta$ and (b) $\psi$ tracking

  • Figure 7

    Control inputs in test case II. (a) PLA and (b) $\delta_a$

  • Figure 8

    Control inputs in test case II. (a) $\delta_e$ and (b) $\delta_r$

  • Figure 9

    Tracking performance in test case IV. (a) $V$ and (b) $\phi$ tracking

  • Figure 10

    Tracking performance in test case IV. (a) $\theta$ and (b) $\psi$ tracking

  • Figure 11

    Control inputs in test case IV. (a) PLA and (b) $\delta_a$

  • Figure 12

    Control inputs in test case IV. (a) $\delta_e$ and (b) $\delta_r$

  • Table 1   Simulation scenarios
    Test case Scenario
    rmI Nominal condition
    rmII Input disturbances
    rmIII Aerodynamic uncertainties
    rmIV Parametric variations
    rmV Reduced control functionality
    rmVI Combination of the uncertainties of Case II-V
  • Table 2   Bounds of the uncertain aerodynamic coefficients
    Element of error vector Error bounds (3$\sigma$ limits)
    $\epsilon_{C_{L,\alpha}^{\alpha}}$ $\left[0.8,1.2\right]$
    $\epsilon_{C_{D,\alpha}^{\alpha}}$ $\left[0.83,1.17\right]$
    $\epsilon_{C_{Y,\beta}^M}$ $\left[0.85,1.15\right]$
    $\epsilon_{C_{l,p}^0}$ $\left[0.6,1.4\right]$
    $\epsilon_{C_{m,\alpha}^{\alpha}}$ $\left[0.83,1.075\right]$
    $\epsilon_{C_{m,q}^0}$ $\left[0.6,1.4\right]$
    $\epsilon_{C_{n,r}^0}$ $\left[0.6,1.4\right]$
  • Table 3   Parametric variations
    Parameter Time-varying changes
    $m$ $m(t)=(1-\frac{\eta_{\rm~var}}{T_{\rm~sim}}t)m_0$
    $I_{xx}$ $I_{xx}(t)=-7.8809\times10^{-5}m^2+25.8857m-6.9683\times10^5$
    $I_{yy}$ $I_{yy}(t)=-8.289\times10^{-4}m^2+266m-7.3048\times10^6$
    $I_{zz}$ $I_{zz}(t)=I_{yy}(t)$
    $S$ $S(t)=\epsilon_{S}S_0$, $\epsilon_{S}\in\left[0.85,1.15\right]$
    $\bar{c}$ $\bar{c}(t)=\epsilon_{\bar{c}}\bar{c}_0$, $\epsilon_{\bar{c}}\in\left[0.85,1.15\right]$
    $b$ $b(t)=\epsilon_{b}b_{0}$, $\epsilon_{b}\in\left[0.85,1.15\right]$