SCIENTIA SINICA Informationis, Volume 48 , Issue 12 : 1651-1669(2018) https://doi.org/10.1360/N112017-00171

Dual-structural network of active defense

More info
  • ReceivedAug 10, 2017
  • AcceptedJan 8, 2018
  • PublishedNov 27, 2018








Supplementary data



[1] von Solms R, van Niekerk J. From information security to cyber security. Comput Secur, 2013, 3897-102 CrossRef Google Scholar

[2] Jacobson V, Smetters D K, Thornton J D, et al. Networking named content. In: Proceedings of the 5th International Conference on Emerging Networking Experiments and Technologies, Rome, 2009. Google Scholar

[3] Braden R, Faber T, Handley M. From protocol stack to protocol heap. SIGCOMM Comput Commun Rev, 2003, 3317-22 CrossRef Google Scholar

[4] Lin C, Peng X H. Research on trustworthy networks. Chin J Comput, 2005, 28: 751--758. Google Scholar

[5] Wu J X, Lan J L, Cheng D N, et al. Novel Network Architecture. Beijing: Posts and Telecom Press, 2014. Google Scholar

[6] Jajodia S, Ghosh A K, Swarup V, et al. Moving Target Defense: Creating Asymmetric Uncertainty for Cyber Threats. Berlin: Springer Ebooks, 2011. Google Scholar

[7] Sheldon F T, Vishik C. Moving Toward Trustworthy Systems: R&. Google Scholar

[8] Wu J X. Meaning and vision of mimic computing and mimic security defense. Telecommun Sci, 2014, 30: 2--7. Google Scholar

[9] Majzoobi M, Koushanfar F, Potkonjak M. Techniques for design and implementation of secure reconfigurable PUFs. ACM Trans Reconfig Technol Syst, 2009, 21-33 CrossRef Google Scholar

[10] Jiang X, Yau W Y. Fingerprint minutiae matching based on the local and global structures. In: Proceedings of International Conference on Pattern Recognition, Barcelona, 2000. 1038--1041. Google Scholar

[11] Gottesman D, Lo H K. From quantum cheating to quantum security. Phys Today, 2000, 5322-27 CrossRef ADS Google Scholar

[12] Endsley M R. Toward a theory of situation awareness in dynamic systems. Hum Factors, 1995, 3732-64 CrossRef Google Scholar

[13] Bandes R, Shimeall T, Heckathorn M, et al. Using SiLK for Network Traffic Analysis, Analyst's Handbook for SiLK Versions 3.8.3 and Later, 2014. http://tools.netsa.cert.org/silk/. Google Scholar

[14] Li D Y, Liu C Y, D Y, et al. Artificial Intelligence With Uncertainty. Beijing: National Defend Industry Press, 2014. Google Scholar

[15] Gollmann D. Computer security. WIREs Comput Stat, 2010, 2544-554 CrossRef Google Scholar

[16] Yang P, Li Y P. On the complementary binary future Internet architecture. Complex Syst Complex Sci, 2014, 11: 53--59. Google Scholar

[17] Yang P, Li Y P. Secondary structure of future Internet based on broadcast-storage concept. Complex Syst Complex Sci, 2015, 12: 18--22. Google Scholar

[18] Li Y P, Yang P. New mechanism for sharing cultural bigdata. China Comput Soc Newsl, 2013, 9: 36--40. Google Scholar

[19] Wang X F, Li X, Chen G R. Complex Networks Theory and Its Application. Beijing: Tsinghua University Press, 2006. Google Scholar

[20] Van Mieghem P, Omic J, Kooij R. Virus spread in networks. IEEE/ACM Trans Netw, 2009, 171-14 CrossRef Google Scholar

[21] Van Mieghem P, Cator E. Epidemics in networks with nodal self-infection and the epidemic threshold. Phys Rev E, 2012, 86016116 CrossRef PubMed ADS Google Scholar

[22] Wang Z T, Wang Z P. Elementary study of supernetworks. Chin J Manage, 2008, 5: 1--8. Google Scholar

[23] Kivela M, Arenas A, Barthelemy M. Multilayer networks. J Complex Netw, 2014, 2203-271 CrossRef Google Scholar

[24] Xing L, Ma J G, Ma W D. Information Sharing Theory and Network Architecture. Beijing: Scicene Press, 2011. Google Scholar

[25] Fronczak A, Fronczak P, Holyst J A. Average path length in random networks. Phys Rev E, 2004, 70056110 CrossRef PubMed ADS Google Scholar

[26] Cohen R, Havlin S. Scale-free networks are ultrasmall. Phys Rev Lett, 2003, 90058701 CrossRef PubMed ADS Google Scholar

[27] Boguna M, Krioukov D. Navigating ultrasmall worlds in ultrashort time. Phys Rev Lett, 2009, 102058701 CrossRef PubMed ADS arXiv Google Scholar


Contact and support