logo

SCIENTIA SINICA Informationis, Volume 48 , Issue 1 : 60-78(2018) https://doi.org/10.1360/N112017-00124

Deep relative metric learning for visual tracking

More info
  • ReceivedJun 2, 2017
  • AcceptedAug 1, 2017
  • PublishedJan 5, 2018

Abstract


Funded by

国家自然科学基金(61572296)

国家自然科学基金(61603372)

国家自然科学基金(61572498)

国家自然科学基金(614722227)

国家自然科学基金(61303086)

国家自然科学基金(61307041)

国家自然科学基金(61672327)

国家重点基础研究发展计划 (973计划)(2012CB316304)

山东省自然科学基金(ZR2015FL020)

模式识别国家重点实验室开放课题(201600024)


References

[1] Zhang S, Yao H, Sun X, et al. Sparse coding based visual tracking: review and experimental comparison. Pattern Recogn, 2013, 46: 1772--1788. Google Scholar

[2] Wu Y, Lim J, Yang M H. Online object tracking: a benchmark. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Portland, 2013. 2411--2418. Google Scholar

[3] Smeulders A W, Chu D M, Cucchiara R, et al. Visual tracking: an experimental survey. IEEE Trans Pattern Anal Mach Intel, 2014, 36: 1442--1468. Google Scholar

[4] Yang M, Pei M T, Wu Y W, et al. Learning online structural appearance model for robust object tracking. Sci China Inf Sci, 2015, 58: 032106. Google Scholar

[5] Bai Y C, Tang M. Robust tracking via weakly supervised ranking SVM. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Providence, 2012. 1854--1861. Google Scholar

[6] Jiang N, Liu W, Wu Y. Learning adaptive metric for robust visual tracking. IEEE Trans Image Process, 2011, 20: 2288--2300. Google Scholar

[7] Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intel, 2013, 35: 1798--1828. Google Scholar

[8] Fan J L, Xu W, Wu Y, et al. Human tracking using convolutional neural networks. IEEE Trans Neural Netw, 2012, 21: 1610--1623. Google Scholar

[9] Hu D, Zhou X S, Wu J J. Visual tracking based on convolutional deep belief network. In: Proceedings of International Workshop on Advanced Parallel Processing Technologies. Berlin: Springer, 2015. 103--115. Google Scholar

[10] Li H X, Li Y, Porikli F. DeepTrack: learning discriminative feature representations by convolutional neural networks for visual tracking. IEEE Trans Image Process, 2016, 25: 1834--1848. Google Scholar

[11] Wang N Y, Yeung D Y. Learning a deep compact image representation for visual tracking. In: Proceedings of International Conference on Advances in Neural Information Processing System, Lake Tahoe, 2013. 809--817. Google Scholar

[12] Wang N Y, Shi J P, Yeung D Y, et al. Understanding and diagnosing visual tracking systems. In: Proceedings of IEEE International Conference on Computer Vision, Santiago, 2015. 3101--3109. Google Scholar

[13] Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intel, 2003, 25: 265--577. Google Scholar

[14] Collins R T. Mean-shift blob tracking through scale space. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Madison, 2003. Google Scholar

[15] Ross D, Lim J W, Lin R S, et al. Incremental learning for robust visual tracking. Int J Comput Vision, 2008, 77: 125--141. Google Scholar

[16] Zhang T Z, Ghanem B, Liu S. Robust visual tracking via structured multi-task sparse learning. Int J Comput Vision, 2013, 102: 367--383. Google Scholar

[17] Porikli F, Tuzel O, Meer P. Covariance tracking using model update based on Lie Algebra. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, New York, 2006. 728--735. Google Scholar

[18] Li K, He F Z, Chen X. Visual tracking algorithm based on MAP multi-subspace incremental learning. Sci Sin Inform, 2016, 46: 476--495. Google Scholar

[19] Zhou Y, Bai X, Liu W, et al. Similarity fusion for visual tracking. Int J Comput Vision, 2016, 118: 337--363. Google Scholar

[20] Zhang K H, Zhang L, Yang M H. Real-time compressive tracking. In: Proceedings of European Conference on Computer Vision, Florence, 2012. 866--879. Google Scholar

[21] Avidan S. Support vector tracking. IEEE Trans Pattern Anal Mach Intel, 2004, 26: 1064--1072. Google Scholar

[22] Avidan S. Ensemble tracking. IEEE Trans Pattern Anal Mach Intel, 2007, 29: 261--271. Google Scholar

[23] Collins R, Liu Y, Leordeanu M. Online selection of discriminative tracking features. IEEE Trans Pattern Anal Mach Intel, 2005, 27: 1631--1643. Google Scholar

[24] Grabner H, Bischof H. Online boosting and vision. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recogntion, New York, 2006. 260--267. Google Scholar

[25] Guo W, Cao L, Han T X, et al. Max-confidence boosting with uncertainty for visual tracking. IEEE Trans Image Process, 2015, 24: 1650--1659. Google Scholar

[26] Saffari A, Leistner C, Santner J, et al. Online random forests. In: Proceedings of IEEE International Conference on Computer Vision Workshops, Kyoto, 2009. 1393--1400. Google Scholar

[27] Babenko B, Yang M, Belongie S. Visual tracking with online multiple instance learning. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recogntion, Miami, 2009. 983--990. Google Scholar

[28] Kalal Z, Matas J, Mikolajczyk K. “P-N learning: bootstrapping binary classifiers by structural constraints. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recogntion, San Francisco, 2010. 49--56. Google Scholar

[29] Zhang J M, Ma S G, Sclaroff S. MEEM: robust tracking via multiple experts using entropy minimization. In: Proceedings of European Conference on Computer Vision. Berlin: Springer, 2014. 188--203. Google Scholar

[30] Bolme D S, Beveridge J R, Draper B A, et al. Visual object tracking using adaptive correlation filters. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 2010. 2544--2550. Google Scholar

[31] Henriques J F, Caseiro R, Martins P, et al. Exploiting the circulant structure of tracking-by-detection with kernels. In: Proceedings of the 12th European Conference on Computer Vision, Florence, 2012. 702--715. Google Scholar

[32] Henriques J F, Caseiro R, Martins P, et al. High-Speed tracking with kernelized correlation filters. IEEE Trans Pattern Anal Mach Intel, 2015, 37: 583--596. Google Scholar

[33] Liu T, Wang G, Yang Q, Real-time part-based visual tracking via adaptive correlation filters. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, 2015. 4902--4912. Google Scholar

[34] LeCun Y, Bengio Y, Hinton G. Deep learning. Nature, 2015, 521: 436--444. Google Scholar

[35] Wang N Y, Yeung D Y. Learning a deep compact image representation for visual tracking. In: Proceedings of Advances in Neural Information Processing Systems, Lake Tahoe, 2013. 809--817. Google Scholar

[36] Hong S, You T, Kwak S, et al. Online tracking by learning discriminative saliency map with convolutional neural network. In: Proceedings of the 32nd International Conference on Machine Learning, Lille, 2015. 597--606. Google Scholar

[37] Wang L, Ouyang W, Wang X, et al. Visual tracking with fully convolutional networks. In: Proceedings of IEEE International Conference on Computer Vision, Santiago, 2015. 3119--3127. Google Scholar

[38] Li H X, Li Y, Porikli F. Deeptrack: learning discriminative feature representations by convolutional neural networks for visual tracking. IEEE Trans Image Process, 2016, 25: 1834--1848. Google Scholar

[39] Ma C, Huang J B, Yang X K, et al. Hierarchical convolutional features for visual tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Santiago, 2015. 3074--3082. Google Scholar

[40] Cui Z, Xiao S T, Feng J S, et al. Recurrently target-attending tracking. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016. 1449--1458. Google Scholar

[41] Bertinetto L, Valmadre J, Henriques J F, et al. Fully-convolutional siamese networks for object tracking. In: Proceeding of European Conference on Computer Vision. Berlin: Springer, 2016. 850--865. Google Scholar

[42] Tao R, Efstratios G, Smeulders A W M. Siamese instance search for tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, 2016. 1420--1429. Google Scholar

[43] Parikh D, Grauman K. Relative attributes. In: Proceedings of International Conference on Computer Vision, Barcelona, 2011. 503--510. Google Scholar

[44] Krizhevsky A, Sutskever I, Hinton G E. ImageNet classification with deep convolutional neural networks. In: Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, 2012. 1097--1105. Google Scholar

[45] Jia Y, Shelhamer E, Donahue J, et al. Caffe: convolutional architecture for fast feature embedding. In: Proceedings of ACM Conference on Multimedia, Orlando, 2014. 675--678. Google Scholar

[46] Matthew D Z, Rob F. Visualizing and understanding convolutional networks. In: Proceedings of European Conference on Computer Vision. Berlin: Springer, 2014. 818--833. Google Scholar

[47] Everingham M, Van G L, Williams C K, et al. The pascal visual object classes challenge. Int J Comput Vision, 2010, 88: 303--338. Google Scholar

[48] Cehovin L, Leonardis A, Kristan M. Visual object tracking performance measures revisited. IEEE Trans Image Process, 2016, 25: 1261--1274. Google Scholar