logo

SCIENTIA SINICA Informationis, Volume 47 , Issue 10 : 1316-1333(2017) https://doi.org/10.1360/N112017-00089

Channel measurements and models for high-speed train wireless communication systems in tunnel scenarios: a survey

More info
  • ReceivedMay 5, 2017
  • AcceptedJun 22, 2017
  • PublishedOct 16, 2017

Abstract


Funded by

国家自然科学基金(61371110,61210002)

信威通信技术有限公司合作项目(11131701)


References

[1] IMT-2020 Promotion Group. 5G Visions and Requirements. White Paper. http://www.imt-2020.cn/en/documents/listByQuery?currentPage=1&content=. Google Scholar

[2] Wang C X, Haider F, Gao X, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Commun Mag, 2014, 52: 122--130. Google Scholar

[3] Liu Y, Ghazal A, Wang C X. Channel measurements and models for high-speed train wireless communication systems in tunnel scenarios: a survey. Sci China Inf Sci, 2017, 60: 101301 CrossRef Google Scholar

[4] Ai B, He R, Zhong Z D, et al. Radio wave propagation scene partitioning for high-speed rails. Int J Antenn Propag, 2012, 2012: 1--7. Google Scholar

[5] Wang C-X, Wu S B, Bai L, et al. Recent advances and future challenges for massive MIMO channel measurements and models. Sci China Inf Sci, 2016, 59: 021301. Google Scholar

[6] Ghazal A, Wang C X, Ai B, et al. A non-stationary wideband MIMO channel model for high-mobility intelligent transportation systems. IEEE Trans Intell Transport Syst, 2015, 16: 885--897. Google Scholar

[7] Fokum D T, Frost V S. A Survey on Methods for Broadband Internet Access on Trains. IEEE Commun Surv Tutorials, 2010, 12: 171-185 CrossRef Google Scholar

[8] Wang C X, Ghazal A, Ai B. Channel Measurements and Models for High-Speed Train Communication Systems: A Survey. IEEE Commun Surv Tutorials, 2016, 18: 974-987 CrossRef Google Scholar

[9] Hrovat A, Kandus G, Javornik T. A Survey of Radio Propagation Modeling for Tunnels. IEEE Commun Surv Tutorials, 2014, 16: 658-669 CrossRef Google Scholar

[10] Guan K, Zhong Z, Alonso J I. 4 GHz in a realistic subway tunnel environment. IEEE Trans Veh Technol, 2012, 61: 834-837 CrossRef Google Scholar

[11] Briso-Rodriguez C, Cruz J M, Alonso J I. Measurements and Modeling of Distributed Antenna Systems in Railway Tunnels. IEEE Trans Veh Technol, 2007, 56: 2870-2879 CrossRef Google Scholar

[12] Guan K, Zhong Z D, Ai B. Statistic modeling for propagation in tunnels based on distributed antenna systems. In: Proceedings of Antennas and Propagation Society International Symposium, Florida, 2013. 1920--1921. Google Scholar

[13] Mahmoud S F, Wait J R. Geometrical optical approach for electromagnetic wave propagation in rectangular mine tunnels. Radio Sci, 1974, 9: 1147-1158 CrossRef ADS Google Scholar

[14] Porrat D. Radio propagation in hallways and streets for UHF communications. Dissertation for Ph.D. Degree. California: Stanford University, 2002. Google Scholar

[15] Zhang J C, Tao C, Liu L, et al. A study on channel modeling in tunnel scenario based on propagation-graph theory. In: Proceedings of IEEE 83rd Vehicular Technology Conference (VTC'16-Spring), Nanjing, 2016. 1--5. Google Scholar

[16] Hwang Y, Zhang Y P, Kouyoumjian R G. Ray-optical prediction of radio-wave propagation characteristics in tunnel environments. 1. Theory. IEEE Trans Antennas Propagat, 1998, 46: 1328-1336 CrossRef ADS Google Scholar

[17] Emami Forooshani A, Noghanian S, Michelson D G. Characterization of Angular Spread in Underground Tunnels Based on the Multimode Waveguide Model. IEEE Trans Commun, 2014, 62: 4126-4133 CrossRef Google Scholar

[18] Dudley D G. Wireless Propagation in Circular Tunnels. IEEE Trans Antennas Propagat, 2005, 53: 435-441 CrossRef ADS Google Scholar

[19] Didascalou D, Maurer J, Wiesbeck W. Subway tunnel guided electromagnetic wave propagation at mobile communications frequencies. IEEE Trans Antennas Propagat, 2001, 49: 1590-1596 CrossRef ADS Google Scholar

[20] Zhang Y P, Hwang Y. Enhancement of rectangular tunnel waveguide model. In: Proceedings of Asia-Pacific Microwave Conference (APMC'97), Hong Kong, 1997. 197--200. Google Scholar

[21] Emslie A, Lagace R, Strong P. Theory of the propagation of UHF radio waves in coal mine tunnels. IEEE Trans Antennas Propagat, 1975, 23: 192-205 CrossRef ADS Google Scholar

[22] Rana M M, Mohan A S. Segmented-Locally-One-Dimensional-FDTD Method for EM Propagation Inside Large Complex Tunnel Environments. IEEE Trans Magn, 2012, 48: 223-226 CrossRef ADS Google Scholar

[23] Taflove A, Hagness S C. Computational Electrodynamics: the Finite-Difference Time-Domain Method. 3rd ed. Norwood: Artech House, 2005. Google Scholar

[24] Ying Wang , Safavi-Naeini S, Chaudhuri S K. A hybrid technique based on combining ray tracing and FDTD methods for site-specific modeling of indoor radio wave propagation. IEEE Trans Antennas Propagat, 2000, 48: 743-754 CrossRef ADS Google Scholar

[25] Wang H, Yu F R, Zhu L. Finite-State Markov Modeling for Wireless Channels in Tunnel Communication-Based Train Control Systems. IEEE Trans Intell Transp Syst, 2014, 15: 1083-1090 CrossRef Google Scholar

[26] Aikio P, Gruber R, Vainikainen P. Wideband radio channel measurements for train tunnels. In: Proceedings of the 48th IEEE Vehicular Technology Conference, Ottawa, 1998. 460--464. Google Scholar

[27] Guan K, Ai B, Zhong Z. Measurements and Analysis of Large-Scale Fading Characteristics in Curved Subway Tunnels at 920 MHz, 2400 MHz, and 5705 MHz. IEEE Trans Intell Transp Syst, 2015, 16: 2393-2405 CrossRef Google Scholar

[28] Zhang Y P. Novel model for propagation loss prediction in tunnels. IEEE Trans Veh Technol, 2003, 52: 1308-1314 CrossRef Google Scholar

[29] Kim Y M, Jung M S, Chin Y O, et al. Analysis of radio-wave propagation characteristics in curved tunnel. Electrom Eng Soc, 2002, 13: 1017--1024. Google Scholar

[30] He R S, Zhong Z D, Briso C. Broadband channel long delay cluster measurements and analysis at 2.4 GHz in subway tunnels. In: Proceedings of IEEE 73rd Vehicular Technology Conference (VTC'11-Spring), Yokohama, 2011. 1--5. Google Scholar

[31] Pardo J M G, Lienard M, Nasr A, et al. Wideband analysis of large scale and small scale fading in tunnels. In: Proceedings of the 8th International Conference on ITS Telecommunications (ITST'08), Phuket, 2008. 270--273. Google Scholar

[32] Lienard M, Degauque P, Baudet J. Investigation on MIMO channels in subway tunnels. IEEE J Select Areas Commun, 2003, 21: 332-339 CrossRef Google Scholar

[33] Cai X, Yin X, Cheng X. An Empirical Random-Cluster Model for Subway Channels Based on Passive Measurements in UMTS. IEEE Trans Commun, 2016, 64: 3563-3575 CrossRef Google Scholar

[34] Jia Y L, Zhao M, Zhou W Y, et al. Measurement and statistical analysis of 1.89 GHz radio propagation in a realistic mountain tunnel. In: Proceedings of International Conference on Wireless Communications & Signal Processing (WCSP'15), Nanjing, 2015. 1--5. Google Scholar

[35] Zhang L, Fernandez J R, Briso-Rodriguez C, et al. Broadband radio communications in subway stations and tunnels. In: Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP'15), Lisbon, 2015. 1--5. Google Scholar

[36] Li J, Zhao Y, Zhang J. Radio channel measurements and analysis at 2.4/5GHz in subway tunnels. China Commun, 2015, 12: 36-45 CrossRef Google Scholar

[37] Zhang Y P, Jiang Z R, Ng T S. Measurements of the propagation of UHF radio waves on an underground railway train. IEEE Trans Veh Technol, 2000, 49: 1342-1347 CrossRef Google Scholar

[38] Molina-Garcia-Pardo J M, Lienard M, Nasr A. On the Possibility of Interpreting Field Variations and Polarization in Arched Tunnels Using a Model for Propagation in Rectangular or Circular Tunnels. IEEE Trans Antennas Propagat, 2008, 56: 1206-1211 CrossRef ADS Google Scholar

[39] Kim Y M, Jung M, Lee B. Analysis of radio wave propagation characteristics in rectangular road tunnel at 800 MHz and 2.4 GHz. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, Columbus, 2003. 1016--1019. Google Scholar

[40] Bashir S. Effect of Antenna Position and Polarization on UWB Propagation Channel in Underground Mines and Tunnels. IEEE Trans Antennas Propagat, 2014, 62: 4771-4779 CrossRef ADS Google Scholar

[41] Ai B, Guan K, Zhong Z. Measurement and Analysis of Extra Propagation Loss of Tunnel Curve. IEEE Trans Veh Technol, 2016, 65: 1847-1858 CrossRef Google Scholar

[42] Savic V, Ferrer-Coll J, Angskog P. Measurement Analysis and Channel Modeling for TOA-Based Ranging in Tunnels. IEEE Trans Wireless Commun, 2015, 14: 456-467 CrossRef Google Scholar

[43] Li G K, Ai B, Guan K, et al. Path loss modeling and fading analysis for channels with various antenna setups in tunnels at 30 GHz band. In: Proceedings of the 10th European Conference on Antennas and Propagation (EuCAP'16), Davos, 2016. 1--5. Google Scholar

[44] Ruisi He , Zhangdui Zhong , Bo Ai . Analysis of the Relation Between Fresnel Zone and Path Loss Exponent Based on Two-Ray Model. Antennas Wirel Propag Lett, 2012, 11: 208-211 CrossRef ADS Google Scholar

[45] Hrovat A, Kandus G, Javornik T. Four-slope channel model for path loss prediction in tunnels at 400 MHz. IET MicroW Antenn Propag, 2010, 4: 571--582. Google Scholar

[46] Guan K, Zhong Z, Ai B. Modeling of the Division Point of Different Propagation Mechanisms in the Near-Region Within Arched Tunnels. Wireless Pers Commun, 2013, 68: 489-505 CrossRef Google Scholar

[47] Marcuvitz N. Waveguide Handbook. New York: Maraw-Hill, 1951. Google Scholar

[48] Kwon H, Kim Y, Lee B. Characteristics of radio propagation channels in tunnel environments: a statistical analysis. In: Proceedings of Antennas and Propagation Society International Symposium, Sendai, 2004. 2995--2998. Google Scholar

[49] Molina-Garcia-Pardo J M, Lienard M, Degauque P. Propagation in tunnels: experimental investigations and channel modeling in a wide frequency band for MIMO applications. EURASIP J Wirel Commun Netw, 2009, 2009: 560--571. Google Scholar

[50] Didascalou D, Maurer J, Wiesbeck W. Subway tunnel guided electromagnetic wave propagation at mobile communications frequencies. IEEE Trans Antennas Propagat, 2001, 49: 1590-1596 CrossRef ADS Google Scholar

[51] Cheng L, Zhang P. Influence of dimension change on radio wave propagation in rectangular tunnels. In: Proceedings of the 5th Conference on Wireless Communications, Networking and Mobile Computing, Beijing, 2009. 1--3. Google Scholar

[52] Wang S. Radio wave attenuation character in the confined environments of rectangular mine tunnel. Modern Appl Sci, 2010, 4: 65--70. Google Scholar

[53] Zhang C-S, Guo L-F. Research on propagation characteristics of electromagnetic wave in tunnels with arbitrary cross sections. In: Proceedings of the 2nd International Conference on Future Computer and Communication, Wuhan, 2010. 22--25. Google Scholar

[54] Zhou C M, Jacksha R. Modeling and measurement of wireless channels for underground mines. In: Proceedings of IEEE International Symposium on Antennas and Propagation (APSURSI), Puerto Rico, 2016. 1253--1254. Google Scholar

[55] Cheng L F, Zhang L L, Li J. Influence of mine tunnel wall humidity on electromagnetic waves propagation. Int J Antenn Propag, 2012, 2012: 1--5. Google Scholar

[56] Sun Z, Akyildiz I. Channel modeling and analysis for wireless networks in underground mines and road tunnels. IEEE Trans Commun, 2010, 58: 1758-1768 CrossRef Google Scholar

[57] Mariage P, Lienard M, Degauque P. Theoretical and experimental approach of the propagation of high frequency waves in road tunnels. IEEE Trans Antennas Propagat, 1994, 42: 75-81 CrossRef ADS Google Scholar

[58] Huo Y, Xu Z, Zheng H D, et al. Effect of antenna on propagation characteristics of electromagnetic waves in tunnel environments. In: Proceedings of Asia Pacific Conference on Postgraduate Research in Microelectronics & Electronics, Shanghai, 2009. 268--271. Google Scholar

[59] Han X, Wang S, Fang T, et al. Propagation character of electromagnetic wave of the different transmitter position in mine tunnel. In: Proceedings of International Conference on Networks Security, Wireless Communications and Trusted Computing, Wuhan, 2009. 530--533. Google Scholar

[60] Rissafi Y, Talbi L, Ghaddar M. Experimental Characterization of an UWB Propagation Channel in Underground Mines. IEEE Trans Antennas Propagat, 2012, 60: 240-246 CrossRef ADS Google Scholar

[61] Kermani M H, Kamarei M. A ray-tracing method for predicting delay spread in tunnel environments. In: Proceedings of IEEE International Conference on Personal Wireless Communications, Hyderabad, 2000. 538--542. Google Scholar

[62] Zhang Y P, Hong H J. Ray-Optical Modeling of Simulcast Radio Propagation Channels in Tunnels. IEEE Trans Veh Technol, 2004, 53: 1800-1808 CrossRef Google Scholar

[63] Zheng H D, Nie X Y. GBSB model for MIMO channel and its spacetime correlation analysis in tunnel. In: Proceedings of International Conference on Networks Security, Wireless Communications and Trusted Computing, Wuhan, 2009. 1--8. Google Scholar

[64] Avazov N, Patzold M. A Novel Wideband MIMO Car-to-Car Channel Model Based on a Geometrical Semi-Circular Tunnel Scattering Model. IEEE Trans Veh Technol, 2016, 65: 1070-1082 CrossRef Google Scholar

[65] Bernado L, Roma A, Paier A, et al. In-tunnel vehicular radio channel characterization. In: Proceedings of IEEE 73rd Vehicular Technology Conference (VTC Spring), Budapest, 2011. 15--18. Google Scholar

[66] Wang H W, Yu F R, Zhu L, et al. Finite-state markov modeling of tunnel channels in comminication-based train control systems. In: Proceedings of IEEE International Conference on Communications Budapest, 2013. 5047--5051. Google Scholar

[67] Yao S H, Wu X L. Modeling for MIMO wireless channels in mine tunnels. In: Proceedings of International Conference on Electric Information and Control Engineering (ICEICE), Wuhan, 2011. 520--523. Google Scholar

[68] Ye X K, Cai X S, Wang H W, et al. Tunnel and non-tunnel channel characterization for high-speed-train scenarios in LTE-A networks. In: Proceeding of IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, 2016. 1--5. Google Scholar

[69] Ranjany A, Misraz P, Dwivediz B, et al. Channel modeling of wireless communication in underground coal mines. In: Proceedings of the 8th International Conference on Communication Systems and Networks (COMSNETS), Bangalore, 2016. 1--2. Google Scholar

[70] Molina-Garcia-Pardo J M, Lienard M, Stefanut P, et al. Modeling and understanding MIMO propagation in tunnels. J Commun, 2009, 4: 241--247. Google Scholar

[71] Minghua J. A modified method for predicting the radio propagation characteristics in tunnels. In: Proceedings of the 7th International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM), Wuhan, 2011. 1--4. Google Scholar

[72] Masson E, Combeau P, Berbineau M, et al. Radio wave propagation in arched cross section tunnels simulations and measurements. J Commun, 2009, 4: 276--283. Google Scholar

[73] Choudhury B, Jha R. A refined ray tracing approach for wireless communications inside underground mines and metrorail tunnels. In: Proceeding of IEEE Applied Electromagnetics Conference (AEMC), Kolkata, 2011. 1--4. Google Scholar

[74] Hairoud S, Combeau P, Pousset Y. WINNER model for subway tunnel at 5.8 GHz. In: Proceedings of the 12th International Conference on ITS Telecommunications (ITST), Taibei, 2012. 743--747. Google Scholar

[75] Liu Y, Wang C X, Ghazal A, et al. A multi-mode waveguide tunnel channel model for high-speed train wireless communication systems. In: Proceedings of the 9th European Conference on Antennas and Propagation (EuCAP), Lisbon, 2015. 1--5. Google Scholar

[76] Gentile C, Valoit F, Moayeri N. A retracing model for wireless propagation in tunnels with varying cross section. In: Proceedings of IEEE Global Communications Conference (GLOBECOM), Anaheim, 2012. 5027--5032. Google Scholar

[77] Chen X, Pan Y T, Wu Y M, et al. Research on doppler spread of multipath channel in subwaytunnel. In: Proceedings of IEEE International Conference on Communication Problem-Solving (ICCP), Beijing, 2014. 56--59. Google Scholar

[78] Emami Forooshani A, Noghanian S, Michelson D G. Characterization of Angular Spread in Underground Tunnels Based on the Multimode Waveguide Model. IEEE Trans Commun, 2014, 62: 4126-4133 CrossRef Google Scholar

[79] Liu C G, Chen Q, Zhang E. A calculation model and characteristics analysis of radio wave propagation in rectangular shed tunnel. In: Proceedings of the 10th International Symposium on Antennas, Propagation & EM Theory (ISAPE), Xian, 2012. 535--539. Google Scholar

[80] Zhang J C, Tao C, Liu L, et al. A study on channel modeling in tunnel scenario based on propagation-graph theory. In: Proceedings of IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, 2016. 1--5. Google Scholar

[81] Zhou C M. Physics-based ultra-wideband channel modeling fortunnel/mining environments. In: Proceedings of IEEE Radio and Wireless Symposium (RWS), San Diego, 2015. 92--94. Google Scholar

[82] Zhang X, Sood N, Siu J K. A Hybrid Ray-Tracing/Vector Parabolic Equation Method for Propagation Modeling in Train Communication Channels. IEEE Trans Antennas Propagat, 2016, 64: 1840-1849 CrossRef ADS Google Scholar

[83] Ge X, Tu S, Han T, et al. Energy efficiency of small cell backhaul networks based on Gauss-Markov mobile models. IET Netw, 2015, 4: 158--167. Google Scholar

[84] Mao G, Anderson B D O. Graph theoretic models and tools for the analysis of dynamic wireless multihop networks. In: Proceedings of IEEE Wireless Communications and Networking Conference, Budapest, 2009. 1--6. Google Scholar

[85] Cichon D J, Zwick T, Wiesbeck W. Ray optical modeling of wireless communications in high-speed railway tunnels. In: Proceedings of IEEE 46th Vehicular Technology Conference on Mobile Technology for the Human Race, Atlanta, 1996. 546--550. Google Scholar

[86] Shin-Hon Chen , Shyh-Kang Jeng . SBR image approach for radio wave propagation in tunnels with and without traffic. IEEE Trans Veh Technol, 1996, 45: 570-578 CrossRef Google Scholar

[87] Didascalou D, Schafer T M, Weinmann F. Ray-density normalization for ray-optical wave propagation modeling in arbitrarily shaped tunnels. IEEE Trans Antennas Propagat, 2000, 48: 1316-1325 CrossRef ADS Google Scholar

[88] Dudley D, Mahmoud S, Lienard M, et al. On wireless communication in tunnels. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, Honolulu, 2007. 3305--3308. Google Scholar

[89] Gibson W C. The Method of Moments in Electromagnetics. Boca Raton: Chapman & Hall/CRC, Taylor & Francis Group, 2008. Google Scholar

[90] Poitau G, Kouki A. Analysis of MIMO capacity in waveguide environments using practical antenna structures for selective mode excitation. In: Proceedings of Canadian Conference on Electrical and Computer Engineering, Niagara, 2004. 349--352. Google Scholar

[91] Popov A V, Ning Yan Zhu A V. Modeling radio wave propagation in tunnels with a vectorial parabolic equation. IEEE Trans Antennas Propagat, 2000, 48: 1403-1412 CrossRef ADS Google Scholar

[92] Ghazal A, Wang C X, Haas H, et al. A non-stationary geometry-based stochastic model for MIMO high-speed train channels. In: Proceedings of the 12th International Conference on ITS Telecommunications (ITST), Taiwan, 2012. 7--11. Google Scholar

[93] Ghazal A, Yuan Y, Wang C X. A Non-Stationary IMT-Advanced MIMO Channel Model for High-Mobility Wireless Communication Systems. IEEE Trans Wireless Commun, 2017, 16: 2057-2068 CrossRef Google Scholar

[94] Ghazal A, Wang C X, Liu Y, et al. A generic non-stationary MIMO channel model for different high-speed train scenarios. In: Proceedings of IEEE/CIC International Conference on Communications in China (ICCC), Shenzhen, 2015. 1--6. Google Scholar

[95] Mao R, Mao G. Road traffic density estimation in vehicular networks. In: Proceedings of IEEE Wireless Communications and Networking Conference (WCNC), Shanghai, 2013. 4653--4658. Google Scholar

[96] Yuan Y, Wang C X, He Y. 3D Wideband Non-Stationary Geometry-Based Stochastic Models for Non-Isotropic MIMO Vehicle-to-Vehicle Channels. IEEE Trans Wireless Commun, 2015, 14: 6883-6895 CrossRef Google Scholar

[97] Yuan Y, Wang C X, Cheng X. Novel 3D Geometry-Based Stochastic Models for Non-Isotropic MIMO Vehicle-to-Vehicle Channels. IEEE Trans Wireless Commun, 2014, 13: 298-309 CrossRef Google Scholar

[98] Chen B, Zhong Z, Ai B. Stationarity intervals of time-variant channel in high speed railway scenario. J China Commun, 2012, 9: 64--70. Google Scholar

[99] Wang C X, Cheng X, Laurenson D I. Vehicle-to-vehicle channel modeling and measurements: recent advances and future challenges. IEEE Commun Mag, 2009, 47: 96--103. Google Scholar

[100] Molisch A F, Tufvesson F, Karedal J, et al. A survey on vehicle-to-vehicle propagation channels. IEEE Wirel Commun Mag, 2009, 16: 12--22. Google Scholar

[101] Liu Y, Wang C X, Lopez C. 3D non-stationary wideband circular tunnel channel models for high-speed train wireless communication systems. Sci China Inf Sci, 2017, 60: 082304 CrossRef Google Scholar

[102] Lienard M, Molina-Garcia-Pardo J M, Laly P, et al. Communication in tunnel: channel characteristics and performance of diversity schemes. In: Proceedings of the XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), Beijing, 2014. 1--4. Google Scholar

[103] Mouaki B A, Quenneville M. Performance evaluation of an L-band broadcast DAB/DMB system in simulated subway tunnel environment. In: Proceedings of the 72nd Vehicular Technology Conference Fall (VTC-Fall'10), Ottawa, 2010. 1--6. Google Scholar

[104] Shuo T L, Zhao K, Wu H. Wireless communication for heavy haul railway tunnels based on distributed antenna systems. In: Proceedings of IEEE 83rd Vehicular Technology Conference (VTC'16-Springer), Nanjing, 2016. 1--5. Google Scholar

  • Figure 1

    Typical shapes of cross sections for tunnels. (a) Rectangular tunnel; (b) arched tunnel; (c) horse-shoe shapedtunnel; (d) semicircular tunnel

  • Figure 2

    (Color online) High speed train cellular architecture for tunnel scenario

  • Figure 3

    Classification of HST tunnel channel models

  • Figure 4

    (Color online) The received power for multi-mode and single-mode cases in a multi-mode tunnel channel model

  • Figure 5

    (Color online) A 3D RS-GBSM for HST tunnel scenarios

  • Table 1   Important tunnel channel measurements$^{\rm~a)}$
    Ref. Frequency Scenario Tunnel parameters Antenna configuration Channel statistics
    [10] 2.4 GHz $\begin{matrix}~\textrm{Arched}\\\textrm{subway}~\\ \textrm{tunnel}~\end{matrix}~$ $~\begin{matrix} \textrm{wide~tunnel:}\\ \textrm{9.8~m$×$6.2~m,}\\ \textrm{narrow~tunnel:}\\ \textrm{4.8~m$×$5.3~m} \end{matrix}~$ SISO $~\begin{matrix} \textrm{SF,~PL,}\\ \textrm{fast~fading,}\\ \textrm{LCF,}\\ \textrm{AFD} \end{matrix}~$
    [11] 900 MHz $\begin{matrix}~\textrm{Arched}~\\ \textrm{railway}~\\ ~\textrm{tunnel}~\end{matrix}~$ $~\begin{matrix} \textrm{height:~5.4~m,}\\ \textrm{width:~10.7~m,}\\ \textrm{length:~4000~m} \end{matrix}~$ SISO PL
    [31] 2.8$\sim$5 GHz $\begin{matrix}~\textrm{Semicircular}~\\ \textrm{railway}~\\ \textrm{tunnel}~\end{matrix}~$ $~\begin{matrix} \textrm{diameter:~8.6~m,}\\ \textrm{height(max):~6.1~m,}\\ \textrm{length:~3336~m} \end{matrix}~$ MIMO $~\begin{matrix} \textrm{PL,}\\ \textrm{PDF,}\\ \textrm{CDF} \end{matrix}~$
    [32] 900 MHz $\begin{matrix}~\textrm{Arched}~\\ \textrm{subway}~\\ \textrm{tunnel}~\end{matrix}~$ $~\begin{matrix} \textrm{two-track~tunnel:}\\ \textrm{width:~8~m,}\\ \textrm{length:~200~m,}\\ \textrm{single-track~tunnel:}\\ \textrm{width:~5~m,}\\ \textrm{length:~100~m} \end{matrix}~$ MIMO $~\begin{matrix} \textrm{CIR,}\\ \textrm{correlation~coefficient} \end{matrix}$
    [33] 2.1376 GHz $~\begin{matrix} \textrm{Subway}\\ \textrm{tunnel} \end{matrix}$ length: 34 km MIMO $\begin{matrix}~\textrm{PDP,~PL,}~\\ \textrm{K~factor,}~\\ \textrm{delay~spread}~\end{matrix}$
    [36] $~\begin{matrix} \textrm{2.4~GHz,}\\ \textrm{5~GHz} \end{matrix}$ $~\begin{matrix} \textrm{Horse-shoe}\\ \textrm{shaped}\\ \textrm{subway}\\ \textrm{tunnel} \end{matrix}$ $~\begin{matrix} \textrm{straight:~240~m,}\\ \textrm{curve:~140~m} \end{matrix}~$ SISO $\begin{matrix}~\textrm{PL,}~\\ \textrm{rms~delay~spread,}~\\ \textrm{channel~stationarity,}~\\ \textrm{channel~capacity}~\end{matrix}$
    [37] $\begin{matrix}~\textrm{465~MHz,}~\\ \textrm{820~MHz}~\end{matrix}$ $\begin{matrix} \textrm{Arched}~\\ \textrm{underground}~\\ \textrm{railway}~\end{matrix}~$ $~\begin{matrix} \textrm{floor~width:~5.8~m,}\\ \textrm{height:~4~m,}\\ \textrm{length:~980~m} \end{matrix}~$ SISO PL
    [38] $\begin{matrix}~\textrm{450~MHz$∼$}~\\ \textrm{5~GHz}~\end{matrix}$ $\begin{matrix} \textrm{Arched}~\\ \textrm{railway}~\\ \textrm{tunnel}~\end{matrix}~$ length: 3000 m SISO PL
    [39] $\begin{matrix}~\textrm{884~MHz$∼$}~\\ \textrm{2.45~GHz}~\end{matrix}$ $\begin{matrix} \textrm{Rectangular}~\\ \textrm{railway}~\\ \textrm{tunnel}~\end{matrix}~$ $~\begin{matrix} \textrm{width:~14.7~m,}\\ \textrm{height:~6.15~m,}\\ \textrm{length:~360~m} \end{matrix}~$ SISO PL
    [40] 2.49$\sim$4 GHz $\begin{matrix} \textrm{Rectangular}~\\ \textrm{tunnel}~\end{matrix}~$ $~\begin{matrix} \textrm{wide~tunnel:}\\ \textrm{2.4~m$×$3.1~m,}\\ \textrm{narrow~tunnel:}\\ \textrm{2.4~m$×$5.2~m} \end{matrix}~$ MIMO $\begin{matrix}~\textrm{PL,}~\\ \textrm{delay~spread}~\end{matrix}$
    a) PDF: probability density function; CDF: cumulative density function; LCR: level crossing rate; AFD: average fade
    duration; CIR: channel impulse responses; PDP: power delay profile; rms: root mean square.
  • Table 2   Important tunnel channel models$^{\rm~a)}$
    Ref. Channel model Scenario Channel characteristics Antenna configuration
    [76] Ray-tracing model Rectangular tunnel The received power SISO
    [77] Ray-tracing model $\begin{matrix} ~\textrm{Rectangular}~\\ ~\textrm{subway~tunnel} ~\end{matrix}~$ $\begin{matrix} \textrm{PSD,}~\\ \textrm{Doppler~spread,}\\ \textrm{Doppler~shift} \end{matrix}~$ SISO
    [56] Multi-mode model $\begin{matrix} \textrm{Rectangular}\\ \textrm{road~tunnel,}\\ \textrm{subway~tunnel} \end{matrix}~$ $\begin{matrix}~\textrm{Field~distribution,}\\ \textrm{PDP} \end{matrix}~$ SISO
    [78] $\begin{matrix}~\textrm{Multi-mode}\\ \textrm{waveguide~model} \end{matrix}~$ $\begin{matrix} \textrm{Rectangular}\\ \textrm{underground~mine,}\\ \textrm{semicircular}\\ \textrm{subway~tunnel} \end{matrix}~$ $\begin{matrix}~\textrm{Angular~properties,}\\ \textrm{correlation~of~array~elements,}\\ \textrm{PAS} \end{matrix}~$ MIMO
    [79] GO model $\begin{matrix} \textrm{Rectangular}\\ \textrm{underground~mine} \end{matrix}~$ $\begin{matrix}~\textrm{Large-scale~fading,}\\ \textrm{small-scale~fading} \end{matrix}~$ SISO
    [25] FSMM $\begin{matrix}~\textrm{Rectangular}\\ \textrm{subway~tunnel} \end{matrix}~$ $\begin{matrix}~\textrm{Number~of~states,}\\ \textrm{distance~interval,}\\ \textrm{SNR} \end{matrix}~$ SISO
    [80] $\begin{matrix}~\textrm{Propagation-graph}\\ \textrm{theory~based~model} \end{matrix}~$ Arched tunnel $\begin{matrix}~\textrm{Channel~coefficients,}\\ \textrm{CIR~in~delay,}\\ \textrm{antennas'~correlation~coefficient,}\\ \textrm{channel~capacity} \end{matrix}~$ MIMO
    [81] $\begin{matrix}~\textrm{Physics-based}\\ \textrm{deterministic~UWB} \end{matrix}~$ Rectangular tunnel $\begin{matrix}~\textrm{Received~power,}\\ \textrm{rms~delay~spread,}\\ \textrm{CIR,}\\ \textrm{channel~transfer~function} \end{matrix}~$ SISO
    [63] GBSB model Rectangular tunnel $\begin{matrix}~\textrm{Space-time~correlation~function,~}~\\ \textrm{PDF~of~AoA,~Rice~factor }~\end{matrix}~$ MIMO
    [74] WINNER model $\begin{matrix}~\textrm{Rectangular}~\\ \textrm{subway~tunnel} \end{matrix}~$ $\begin{matrix}~\textrm{PL,~fast~fading,}~\\ \textrm{delays,~AoA,~AoD} \end{matrix}~$ MIMO
    [64] GBSM $\begin{matrix}~\textrm{Semicircular}~\\ \textrm{tunnel} \end{matrix}~$ $\begin{matrix}~\textrm{Time-variant~transfer~function,}~\\ \textrm{frequency~correlation~function,}\\ \textrm{CCF,~ACF} \end{matrix}~$ MIMO
    [82] Hybridmodel Rectangular tunnel The received power SISO
    a) AoA: angle of arrival; AoD: angle of departure; rms: root mean square; PSD: power spectrum density; PAS: power
    azimuth spectrum; SNR: signal to noise; CCF: cross correlation function; ACF: autocorrelation function.