logo

SCIENTIA SINICA Informationis, Volume 47 , Issue 9 : 1183-1197(2017) https://doi.org/10.1360/N112017-00081

Multi-mode haptic interaction technique and its application

More info
  • ReceivedApr 27, 2017
  • AcceptedJun 22, 2017
  • PublishedSep 7, 2017

Abstract


Funded by

国家重点研发计划项目(2016YFB1001300)

国家自然科学基金重点项目(91648206)


References

[1] Brewster S. Haptic human-computer interaction. In: Proceedings of the 4th Annual Conference of the ACM Special Interest Group on Computer-Human Interaction, Dunedin, 2003. 3--4. Google Scholar

[2] Cooperstock J R. Multimodal telepresence systems. IEEE Signal Proc Mag, 2011, 28: 77--86. Google Scholar

[3] Wu J, Song A G, Li J Q. Research summarization of image expression with haptic rendering. Appl Res Comput, 2007, 24: 1--3. Google Scholar

[4] Liu P X, Zheng W, Chebbi B. Surgical simulation with high-fidelity haptic feedback. Int J Robot Autom, 2007, 22: 59--68. Google Scholar

[5] Kostopoulos K, Moustakas K, Tzovaras D, et al. Haptic access to conventional 2D maps for the visually impaired. In: Proceedings of 3DTV Conference, Kos Island, 2007. 1--4. Google Scholar

[6] Magnenat-Thalmann N, Bonanni U. Haptic sensing of virtual textiles. In: Human Haptic Perception: Basics and Applications. Berlin: Springer, 2008. 513--523. Google Scholar

[7] Dima M, Hurcombe L, Wright M. Touching the past: haptic augmented reality for museum artefacts. In: Proceedings of International Conference on Virtual, Augmented and Mixed Reality. Berlin: Springer, 2014. 3--14. Google Scholar

[8] Basdogan C, Srinivasan M A. Haptic rendering in virtual environments. In: Handbook of Virtual Environments. Appleton: Lawrence Erlbaum Associates, 2002. 117--134. Google Scholar

[9] Hayward V, Yi D. Change of height: an approach to the haptic display of shape and texture without surface normal. In: Experimental Robotics VIII. Berlin: Springer, 2003. 570--579. Google Scholar

[10] Otaduy M A, Lin M C. A modular haptic rendering algorithm for stable and transparent 6-dof manipulation. IEEE Trans Robot, 2006, 22: 751-762 CrossRef Google Scholar

[11] Zilles C B, Salisbury J K. A constraint-based God-object method for haptic display. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, 1995. 146--151. Google Scholar

[12] Ruspini D C, Kolarov K, Khatib O. The haptic display of complex graphical environments. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques. New York: ACM Press, 1997. 345--352. Google Scholar

[13] Ortega M, Redon S, Coquillart S. A six degree-of-freedom god-object method for haptic display of rigid bodies with surface properties.. IEEE Trans Visual Comput Graphics, 2007, 13: 458-469 CrossRef PubMed Google Scholar

[14] Basdogan C, Ho C, Srinivasan M A. A raybased haptic rendering technique for displaying shape and texture of 3D objects in virtual environments. ASME Winter Annu Meet, 1997, 61: 77--84. Google Scholar

[15] Ang Q Z, Horan B, Najdovski Z, et al. Enabling multi-point haptic grasping in virtual environments. In: Proceedings of IEEE Symposium on 3D User Interfaces, Singapore, 2011. 55--58. Google Scholar

[16] McNeely W A, Puterbaugh K D, Troy J J. Six degree-of-freedom haptic rendering using voxel sampling. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, 2005. Google Scholar

[17] Vlasov R, Friese K I, Wolter F E. Haptic rendering of volume data with collision detection guarantee using path finding. In: Transactions on Computational Science XVIII. Berlin: Springer, 2013. 212--231. Google Scholar

[18] 陆熊. 虚拟环境中力/触觉建模与感知理论和方法研究. 博士学位论文. 南京: 东南大学, 2008. Google Scholar

[19] Zhang X R, Song A G, Liu J, et al. Development on haptic model and redering technology of virtual objects. J Syst Simul, 2009, 21: 4555--4560. Google Scholar

[20] Colgate J E, Brown J M. Factors affecting the z-width of a haptic display. In: Proceedings of IEEE International Conference on Robotics and Automation, San Diego, 1994. 3205--3210. Google Scholar

[21] Abbott J J, Okamura A M. Effects of position quantization and sampling rate on virtual-wall passivity. IEEE Trans Robot, 2005, 21: 952-964 CrossRef Google Scholar

[22] Diolaiti N, Niemeyer G, Barbagli F, et al. The effect of quantization and coulomb friction on the stability of haptic rendering. In: Proceedings of the 1st Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Pisa, 2005. 237--246. Google Scholar

[23] Diolaiti N, Niemeyer G, Barbagli F. Stability of haptic rendering: discretization, quantization, time delay, and coulomb effects. IEEE Trans Robot, 2006, 22: 256-268 CrossRef Google Scholar

[24] Colgate J E, Stanley M C, Brown J M. Issues in the haptic display of tool use. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Pittsburgh, 1995. 140--145. Google Scholar

[25] Adams R J, Hannaford B. Stable haptic interaction with virtual environments. IEEE Trans Robot Automat, 1999, 15: 465-474 CrossRef Google Scholar

[26] Hannaford B, Jee-Hwan Ryu B. Time-domain passivity control of haptic interfaces. IEEE Trans Robot Automat, 2002, 18: 1-10 CrossRef Google Scholar

[27] Lu X, Song A, Ye Y. Improved haptic rendering through tuning the mechanical impedance of human arm. In: Proceedings of IEEE International Conference on Virtual Environments, Human-Computer Interfaces and Measurement Systems, Ottawa, 2011. 1--5. Google Scholar

[28] Alhalabi M O, Daniulaitis V, Kawasaki H, et al. Future haptic science encyclopedia: an experimental implementation of networked multi-threaded haptic virtual environment. In: Proceedings of the 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Alexandria, 2006. 507--513. Google Scholar

[29] Barbagli F, Salisbry K, Devengenzo R. Enabling multi-finger, multi-hand virtualized grasping. In: Proceedings of IEEE International Conference on Robotics and Automation, Taipei, 2003. 809--815. Google Scholar

[30] Davanne M, Meseure P, Chaillou C. Stable haptic interaction in a dynamic virtual environment. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, Lausanne, 2002. 2881--2886. Google Scholar

[31] Kyung K U, Lee J Y. Ubi-Pen: a haptic interface with texture and vibrotactile display. IEEE Comput Grap Appl, 2009, 29: 56-64 CrossRef Google Scholar

[32] Kyung K U, Lee J Y, Park J. Haptic stylus and empirical studies on braille, button, and texture display. BioMed Res Int, 2008, 2008: 369651. Google Scholar

[33] Mullenbach J, Shultz C, Piper A M, et al. Surface haptic interactions with a TPad tablet. In: Proceedings of the Adjunct Publication of the 26th Annual ACM Symposium on User Interface Software and Technology, St. Andrews, 2013. 7--8. Google Scholar

[34] Lévesque V, Oram L, MacLean K, et al. Restoring physicality to touch interaction with programmable friction. In: Proceedings of IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, 2011. 61--62. Google Scholar

[35] Wiertlewski M, Leonardis D, Meyer D J, et al. A high-fidelity surface-haptic device for texture rendering on bare finger. In: Proceedings of International Conference on Human Haptic Sensing and Touch Enabled Computer Applications. Berlin: Springer, 2014. 241--248. Google Scholar

[36] Hasegawa K, Shinoda H. Generating vibrotactile images on the human palms. In: Haptic Interaction. Berlin: Springer, 2015. 311--312. Google Scholar

[37] Wang D X, Jiao J, Zhang Y R, et al. Computer haptics: haptic modeling and rendering in virtual reality environments. J Comput Aid Des Comput Graph, 2016, 28: 881--895. Google Scholar

[38] Ochiai Y, Hoshi T, Rekimoto J, et al. Diminished haptics: towards digital transformation of real world textures. In: Proceedings of International Conference on Human Haptic Sensing and Touch Enabled Computer Applications. Berlin: Springer, 2014. 409--417. Google Scholar

[39] Gallo S, Santos-Carreras L, Rognini G, et al. Towards multimodal haptics for teleoperation: design of a tactile thermal display. In: Proceedings of the 12th IEEE International Workshop on Advanced Motion Control (AMC), Sarajevo, 2012. 1--5. Google Scholar

[40] Kobayashi T, Fukumori M. Proposal of a design tool for tactile graphics with thermal sensation. In: Proceedings of the 18th International Conference on Virtual Systems and Multimedia (VSMM), Milan, 2012. 537--540. Google Scholar

[41] Wu J, Song A G, Li J Q. Research on mass-spring force/deformation modeling for haptic display. J Syst Simul, 2006, 18: 3152--3156. Google Scholar

[42] Zhang X, Sun W, Song A. Layered rhombus-chain-connected model for real-time haptic rendering. Artif Intell Rev, 2014, 41: 49-65 CrossRef Google Scholar

[43] Zhang X R, Sun W, Song A G, et al. Virtual lung surgery simulation systen based on double-channel haptic interaction. Chinese J Sci Instrum, 2012, 33: 421--428. Google Scholar

[44] Mao C, Song A G, Ma J Q. A new 6-axis wrist force sensor. J Nanjing Univ Inf Sci Technol, 2011, 03: 402--407. Google Scholar

[45] Shuai L G, Kuang Y H, Song A G, et al. The back-on-finger type electrotactile representation device and its perform ance evaluation. Ind Instrum Autom, 2000, 25--27. Google Scholar

[46] Chen H. Theory and experiment research of multi-freedom degree force telepressence remote system and multifingered hands grasping. Dissertation for Ph.D. Degree. Nanjing: Southeast University, 1999. Google Scholar

[47] Cui J W, Song A G, Huang W Y, et al. A new 6-DOF universal hand controller. China Mech Eng, 2005, 16: 320--323. Google Scholar

[48] Wu C C, Song A G. A 7 DOF force feedback hand controller measurement and control system. Meas Control Technol, 2013, 32: 70--73. Google Scholar

[49] Zheng S H, Wang A M, Dai J Q. Magnetorheological fluid devices and the applications in force feedback data glove. Sensor World, 2008, 14: 17--22. Google Scholar

[50] Dai J Q, Wang A M, Song A G, et al. Passive force actuator for force feedback data glove. J Southeast Univ, 2010, 40: 123--127. Google Scholar

[51] Chen D, Song A, Tian L. A novel miniature multi-mode haptic pen for image interaction on mobile terminal. In: Proceedings of IEEE International Symposium on Haptic, Audio and Visual Environments and Games (HAVE), Ottawa, 2015. 1--6. Google Scholar

[52] Li J Q, Cai F, Wu J F. Design of a virtual environment thermal tactile display simulation system. Meas Control Technol, 2012, 31: 114--117. Google Scholar