SCIENTIA SINICA Informationis, Volume 47 , Issue 11 : 1445-1463(2017) https://doi.org/10.1360/N112017-00066

Dynamic full Bayesian ensemble classifiers for small time series

More info
  • ReceivedMay 23, 2017
  • AcceptedJun 30, 2017
  • PublishedNov 15, 2017


Funded by




[1] Wang S C, Du R J, Liu Y. The Learning and Optimization of Full Bayes Classifiers with Continuous Attributes. Chin J Comp, 2012, 35: 2129-2138 CrossRef Google Scholar

[2] Chow C, Liu C. Approximating discrete probability distributions with dependence trees. IEEE Trans Inform Theor, 1968, 14: 462-467 CrossRef Google Scholar

[3] Friedman N, Geiger D, Goldszmidt M. Bayesian network classifiers. Machine Learning, 1997, 29: 131-163 CrossRef Google Scholar

[4] Domingos P, Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 1997, 29: 103-130 CrossRef Google Scholar

[5] de Campos C P, Corani G, Scanagatta M. Learning extended tree augmented naive structures. Int J Approximate Reasoning, 2016, 68: 153-163 CrossRef Google Scholar

[6] Cheng J, Greiner R. Comparing Bayesian network classifiers. In: Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence (UAI-99), San Francisco, 1999. 101--108. Google Scholar

[7] Acid S, de Campos L M, Castellano J G. Learning Bayesian Network Classifiers: Searching in a Space of Partially Directed Acyclic Graphs. Mach Learn, 2005, 59: 213-235 CrossRef Google Scholar

[8] Yager R R. An extension of the naive Bayesian classifier. Inf Sci, 2006, 176: 577-588 CrossRef Google Scholar

[9] Webb G I, Boughton J R, Wang Z. Not So Naive Bayes: Aggregating One-Dependence Estimators. Mach Learn, 2005, 58: 5-24 CrossRef Google Scholar

[10] Wang S C, Liu X H, Tang H Y. The learning and optimizing of Markov network classifiers based on dependency analysis. Pattern Recogn Artif Inteligence, 2006, 19: 485--490. Google Scholar

[11] Wang S C, Xu G L, Du R J. Restricted Bayesian classification networks. Sci China Inf Sci, 2013, 56: 078105. Google Scholar

[12] Flores M J, Gámez J A, Martínez A M. Domains of competence of the semi-naive Bayesian network classifiers. Inf Sci, 2014, 260: 120-148 CrossRef Google Scholar

[13] Daniel B, Aryeh K. A finite sample analysis of the naive Bayes classifier. J Mach Learn Res, 2015, 16: 1519--1545. Google Scholar

[14] John G H, Langley P. Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence (UAI-1995), San Francisco, 1995. 338--345. Google Scholar

[15] Pérez A, Larra?aga P, Inza I. Supervised classification with conditional Gaussian networks: Increasing the structure complexity from naive Bayes. Int J Approximate Reasoning, 2006, 43: 1-25 CrossRef Google Scholar

[16] Pérez A, Larra?aga P, Inza I. Bayesian classifiers based on kernel density estimation: Flexible classifiers. Int J Approximate Reasoning, 2009, 50: 341-362 CrossRef Google Scholar

[17] He Y L, Wang R, Kwong S. Bayesian classifiers based on probability density estimation and their applications to simultaneous fault diagnosis. Inf Sci, 2014, 259: 252-268 CrossRef Google Scholar

[18] Gutiérrez L, Gutiérrez-Pe?a E, Mena R H. Bayesian nonparametric classification for spectroscopy data. Comp Stat Data Anal, 2014, 78: 56-68 CrossRef Google Scholar

[19] Xiang Z L, Yu X R, Kang D K. Experimental analysis of na?ve Bayes classifier based on an attribute weighting framework with smooth kernel density estimations. Appl Intell, 2016, 44: 611-620 CrossRef Google Scholar

[20] Wang S, Gao R, Wang L. Bayesian network classifiers based on Gaussian kernel density. Expert Syst Appl, 2016, 51: 207-217 CrossRef Google Scholar

[21] Wang S C, Gao R, Du R J. Restricted Bayesian network classifier based on Gaussian Copula. Chinese J Comput, 2016, 39: 1612--1625. Google Scholar

[22] Wang S C, Gao R, Du R J. Restricted Gaussian classification network. Acta Autom Sin, 2015, 41: 2128--2140. Google Scholar

[23] Gaussian Classifier-Based Evolutionary Strategy for Multimodal Optimization. IEEE Trans Neural Netw Learning Syst, 2014, 25: 1200-1216 CrossRef Google Scholar

[24] Martınez M, Sucar L E. Learning dynamic naive bayesian classifier. In: Proceedings of the 21st International Florida Artificial Intelligence Research Symposium (FLAIRS-21), San Francisco, 2008. 655--659. Google Scholar

[25] Palacios-Alonso M A, Brizuela C A, Sucar L E. Evolutionary learning of dynamic naive Bayesian classifiers. J Autom Reason, 2009, 45: 21--37. Google Scholar

[26] Arriaga A, Sucarsuccar H H, Mendozaduran L E, et al. A comparison of dynamic naive Bayesian classifiers and hidden Markov models for gesture recognition. J Appl Res Technol, 2011, 9: 81--102. Google Scholar

[27] Wang S C, Zhang J F, Wang H. The method of dynamic naive Bayesian classifier for impact analysis of Chinas economic growth. ICIC Express Lett Part B Appl, 2013, 4: 7--12. Google Scholar

[28] AlKhateeb J H, Pauplin O, Ren J. Performance of hidden Markov model and dynamic Bayesian network classifiers on handwritten Arabic word recognition. Knowledge-Based Syst, 2011, 24: 680-688 CrossRef Google Scholar

[29] Yu B, Mark T. Learning gene regulations from multiple knockout data via an efficient dynamic Bayesian network reconstruction. Bioph J, 2011, 100: 311--322. Google Scholar

[30] Kafai M, Bhanu B. Dynamic Bayesian Networks for Vehicle Classification in Video. IEEE Trans Ind Inf, 2012, 8: 100-109 CrossRef Google Scholar

[31] Wang S C, Bi Y J, Pei Z. The method of dynamic Bayesian network classifiers for impact analysis on China import and export of goods. Chinese J Manage Sci, 2011, 19: 625--629. Google Scholar

[32] Wang S C, Pei Z, Bi Y J. Dynamic Bayesian network classifier model for predicting the cyclical turning points of economic fluctuation. J Ind Eng Eng Manage, 2011, 25: 173--177. Google Scholar

[33] Wang S C, Gao R, Du R J. Learning and optimization of dynamic naive Bayesian classifiers for small time series. Control Decis, 2017, 32: 163--166. Google Scholar

[34] Heckerman D. Bayesian networks for data mining. Data Min Knowledge Discovery, 1997, 1: 79-119 CrossRef Google Scholar

[35] Friedman N, Murphy K P, Russell S. Learning the structure of dynamic probabilistic networks. In: Proceedings of the 14th International Conference on Uncertainty in Artificial Intelligence, Madison, 1998. 139--147. Google Scholar