logo

SCIENTIA SINICA Informationis, Volume 48 , Issue 2 : 221-232(2018) https://doi.org/10.1360/N112017-00028

Secure beamforming for two-way multiantenna relay systems

More info
  • ReceivedApr 6, 2017
  • AcceptedJun 11, 2017
  • PublishedNov 20, 2017

Abstract


Funded by

国家高技术研究发展计划 (863)(2015AA01A708)

国家自然科学基金(61601514)

国家自然科学基金(61379006)

国家自然科学基金(61501516)

中国博士后科学基金(2016M592990)


References

[1] Wyner A D. The Wire-Tap Channel. Bell Syst Technical J, 1975, 54: 1355-1387 CrossRef Google Scholar

[2] Tsiligkaridis T. Secure MIMO Communications Under Quantized Channel Feedback in the Presence of Jamming. IEEE Trans Signal Process, 2014, 62: 6265-6275 CrossRef ADS arXiv Google Scholar

[3] Zhang L J, Jin L, Luo W Y, et al. Robust secure transmission for multiusers MIMO systems with probabilistic QoS constraints. Sci China Inf Sci, 2016, 59: 022309. Google Scholar

[4] Chen T, Yu H, Wei G. Study on the physical layer security of cognitive radio networks and its robustness design. J Electron Inf Technol, 2012, 34: 770--775. Google Scholar

[5] Jindal A, Kundu C, Bose R. Secrecy Outage of Dual-Hop AF Relay System With Relay Selection Without Eavesdropper's CSI. IEEE Commun Lett, 2014, 18: 1759-1762 CrossRef Google Scholar

[6] Zhang R, Liang Y C, Chai C C. Optimal beamforming for two-way multi-antenna relay channel with analogue network coding. IEEE J Sel Areas Commun, 2009, 27: 699-712 CrossRef Google Scholar

[7] Wang J, Zhang Y, Long H. Cooperative jamming and power allocation with untrusty two-way relay nodes. IET Commun, 2014, 8: 2290-2297 CrossRef Google Scholar

[8] Mo J, Tao M, Liu Y. Secure Beamforming for MIMO Two-Way Communications With an Untrusted Relay. IEEE Trans Signal Process, 2014, 62: 2185-2199 CrossRef ADS arXiv Google Scholar

[9] Jeong C, Kim I M, Kim D I. Joint secure beamforming design at the source and the relay for an amplify-and-forward MIMO untrusted relay system. IEEE Trans Inf Foren Secur, 2013, 7: 310--320. Google Scholar

[10] Ding Z, Ma Z, Fan P. Asymptotic Studies for the Impact of Antenna Selection on Secure Two-Way Relaying Communications with Artificial Noise. IEEE Trans Wireless Commun, 2014, 13: 2189-2203 CrossRef Google Scholar

[11] Ding Z, Xu M, Lu J. Improving Wireless Security for Bidirectional Communication Scenarios. IEEE Trans Veh Technol, 2012, 61: 2842-2848 CrossRef Google Scholar

[12] Mukherjee A, Swindlehurst A L. Securing multi-antenna two-way relay channels with analog network coding against eavesdroppers. In: Proceedings of IEEE 11th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), Marrakech, 2010. 1--5. Google Scholar

[13] Chen J, Zhang R, Song L. Joint Relay and Jammer Selection for Secure Two-Way Relay Networks. IEEE TransInformForensic Secur, 2012, 7: 310-320 CrossRef Google Scholar

[14] Yang Y, Sun C, Zhao H. Algorithms for Secrecy Guarantee With Null Space Beamforming in Two-Way Relay Networks. IEEE Trans Signal Process, 2014, 62: 2111-2126 CrossRef ADS Google Scholar

[15] Wang H M, Yin Q, Xia X G. Distributed Beamforming for Physical-Layer Security of Two-Way Relay Networks. IEEE Trans Signal Process, 2012, 60: 3532-3545 CrossRef ADS Google Scholar

[16] Wang H M, Luo M, Yin Q. Hybrid Cooperative Beamforming and Jamming for Physical-Layer Security of Two-Way Relay Networks. IEEE TransInformForensic Secur, 2013, 8: 2007-2020 CrossRef Google Scholar

[17] Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004. Google Scholar

[18] Luo Z Q, Ma W K, So A C, et al. Semidefinite relaxation of quadratic optimization problems. IEEE Signal Proc Mag, 2010, 27: 20--34. Google Scholar

[19] Beck A, Ben-Tal A, Tetruashvili L. A sequential parametric convex approximation method with applications to nonconvex truss topology design problems. J Glob Optim, 2010, 47: 29-51 CrossRef Google Scholar

[20] Boyd S P, Grant M C. CVX: matlab software for disciplined convex programming, version 2.0. 2012. http://cvxr.com/cvx. Google Scholar

[21] Horn R A, Johnson C R. Matrix Analysis. 2nd ed. Cambridge: Cambridge University Press, 2013. Google Scholar

  • Figure 1

    System model

  • Figure 2

    The relationship between the secrecy sum rate and the maximum transmitting power

  • Figure 3

    The security performance VS the eavesdropping nodes number

  • Figure 4

    The relationship between the secrecy sum rate and the iterations number of SSRMB scheme

  •   
    算法1 SCA optimized algorithm for the question (20)
    Initialization: set threshold: $\varepsilon~$, maximum iterations: $L$, $n~=~0$, and initial point in (28): $(t_i^{(n)},x_{i,2}^{(n)},y_{k,1}^{(n)},y_{k,2}^{(n)},t_e^{(n)})$,
    1: while ($|R_s^{(n)}~-~R_s^{(n~-~1)}|~\ge~\varepsilon~$ or $n~\le~L$), do
    2: solve the question of (28), and take $(t_i^~\star,~x_{i,2}^~\star,~y_{k,1}^~\star,~y_{k,2}^~\star,~t_e^~\star~)$ as the optional solution of $({t_i},{x_{i,2}},{y_{k,1}},{y_{k,2}},{t_e})$,
    3: $n~=~n~+~1$,
    4: set $(t_i^{(n)},x_{i,2}^{(n)},y_{k,1}^{(n)},y_{k,2}^{(n)},t_e^{(n)})~=~(t_i^~\star,~x_{i,2}^~\star,~y_{k,1}^~\star,~y_{k,2}^~\star,~t_e^~\star~)$,
    end while