SCIENTIA SINICA Informationis, Volume 48 , Issue 8 : 1051-1064(2018) https://doi.org/10.1360/N112017-00023

A novel 3-D reconstruction approach based on group sparsity of array InSAR

More info
  • ReceivedMar 10, 2017
  • AcceptedMay 17, 2017
  • PublishedJan 18, 2018


Funded by


[1] Zhu X X, Bamler R. Space-borne high resolution tomographic interferometry. In: Proceedings of IEEE Geoscience and Remote Sensing Society (IGARSS), Cape Town, 2009. 869--872. Google Scholar

[2] Fornaro G, Serafino F. Imaging of Single and Double Scatterers in Urban Areas via SAR Tomography. IEEE Trans Geosci Remote Sens, 2006, 44: 3497-3505 CrossRef ADS Google Scholar

[3] Reigber A, Moreira A. First demonstration of airborne SAR tomography using multibaseline L-band data. IEEE Trans Geosci Remote Sens, 2000, 38: 2142-2152 CrossRef ADS Google Scholar

[4] Zhu X X, Bamler R. Tomographic SAR Inversion by $L_{1}$ -Norm Regularization-The Compressive Sensing Approach. IEEE Trans Geosci Remote Sens, 2010, 48: 3839-3846 CrossRef ADS Google Scholar

[5] Zhu X X, Bamler R. Super-Resolution Power and Robustness of Compressive Sensing for Spectral Estimation With Application to Spaceborne Tomographic SAR. IEEE Trans Geosci Remote Sens, 2012, 50: 247-258 CrossRef ADS Google Scholar

[6] Schmitt M, Stilla U. Compressive Sensing Based Layover Separation in Airborne Single-Pass Multi-Baseline InSAR Data. IEEE Geosci Remote Sens Lett, 2013, 10: 313-317 CrossRef ADS Google Scholar

[7] Yuan M, Lin Y. Model selection and estimation in regression with grouped variables. J R Statistical Soc B, 2006, 68: 49-67 CrossRef Google Scholar

[8] Akaike H. Information theory and an extension of the maximum likelihood principle. Inter Symp Inform Theory, 1992, 1: 610--624. Google Scholar

[9] Zhang F B. Research on signal processing of 3-D reconstruction in linear array synthetic aperture radar interferometry. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2015. Google Scholar

[10] Budillon A, Evangelista A, Schirinzi G. Three-Dimensional SAR Focusing From Multipass Signals Using Compressive Sampling. IEEE Trans Geosci Remote Sens, 2011, 49: 488-499 CrossRef ADS Google Scholar

[11] Zhang F B, Liang X D, Wu Y R. 3-D reconstruction for multi-channel SAR interferometry using terrain stagnation point based division. J Electron Inform Technol, 2015, 10: 2287--2293. Google Scholar

[12] Fornaro G, Lombardini F, Serafino F. Three-Dimensional Multipass SAR Focusing: Experiments With Long-Term Spaceborne Data. IEEE Trans Geosci Remote Sens, 2005, 43: 702-714 CrossRef ADS Google Scholar

[13] Tropp J, Gilbert A C. Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans Inf Theory, 2008, 53: 4655--4666. Google Scholar

[14] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Rev, 2001, 43: 33--61. Google Scholar

[15] Donoho D L. Compressed sensing. IEEE Trans Inform Theor, 2006, 52: 1289-1306 CrossRef Google Scholar

[16] Huang J, Zhang T. The benefit of group sparsity. Ann Statist, 2010, 38: 1978-2004 CrossRef Google Scholar

[17] Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Statistical Soc B, 2005, 67: 301-320 CrossRef Google Scholar

[18] Malioutov D, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans Signal Process, 2005, 53: 3010-3022 CrossRef ADS Google Scholar

[19] Tibshirani R, Johnstone I, Hastie T. Least angle regression. Ann Statist, 2004, 32: 407-499 CrossRef Google Scholar

  • Figure 1

    (a) The imaging geometry of array InSAR; (b) the layover model of array InSAR

  • Figure 2

    Workflow of the proposed approach of $3$-D reconstruction with array InSAR

  • Figure 3

    Comparison of scatters reconstruction with methods of TSVD, BP and our proposed algorithm. Interval of scatters is (a) 80 m, (b) 40 m, (c) 10 m, (d) 2 m, (e) 1 m, respectively; (f) magnification of part of (e)

  • Figure 4

    Performance evaluation of our proposed algorithm. Detection rate with different (a) super-resolution factors, (b) SNR, (c) array numbers; (d) detection rate with fixed $N~\times~$SNR; (e) super-resolution ability of different $N~\times~$SNR

  • Figure 5

    (a) Laying of corner reflectors with layover phenomenon; (b) SAR image of layover area

  • Figure 6

    Comparison of reconstruction of layover calibration pionts between methods of BP and our proposed algorithm. distance of 15 m with methods of (a) BP, (b) our proposed algorithm; distance of 1.8 m with methods of (c) BP, (d) our proposed algorithm

  • Figure 7

    (a) $2$-D SAR image of building areas; (b) result of $3$-D reconstruction with point clouds

  • Figure 8

    Result of $3$-D reconstruction of building areas with optical patch

  • Table 1   The system parameters of array InSAR
    Item Parameter Item Parameter
    Frequency 15 GHz Velocity 70 m/s
    Bandwidth 500 MHz Azimuth beam width 2$^{\circ}$
    PRF 1 kHz Range beam width 27$^{\circ}$
    Height 600 m Down-view angle 25$^{\circ}$