国家重点基础研究发展计划 (973)(2015CB352502)
国家自然科学基金(61272092,61572289)
山东省自然科学基金(ZR2015FM002,ZR2016FB14)
[1] Dingqi Yang , Daqing Zhang , Zheng V W. Modeling User Activity Preference by Leveraging User Spatial Temporal Characteristics in LBSNs. IEEE Trans Syst Man Cybern Syst, 2015, 45: 129-142 CrossRef Google Scholar
[2] Yuan Q, Cong G, Ma Z, et al. Time-aware point-of-interest recommendation. In: Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, New York, 2013. 363--372. Google Scholar
[3] Nguyen N T, Phung D Q, Venkatesh S, et al. Learning and detecting activities from movement trajectories using the hierarchical hidden Markov model. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Los Alamitos, 2005: 955--960. Google Scholar
[4] Monreale A, Pinelli F, Trasarti R, et al. Wherenext: a location predictor on trajectory pattern mining. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2009. łinebreak 637--646. Google Scholar
[5] He J, Li X, Liao L, et al. Inferring a personalized next point-of-interest recommendation model with latent behavior patterns. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence, Menlo Park, 2016. 137--143. Google Scholar
[6] Song L J, Meng F R, Yuan G. Moving object location prediction algorithm based on Markov model and trajectory similarity. Comput App, 2016, 36: 39--43 . Google Scholar
[7] Long X, Jin L, Joshi J. Exploring trajectory-driven local geographic topics in foursquare. In: Proceedings of the ACM Conference on Ubiquitous Computing, New York, 2012. 927--934. Google Scholar
[8] Cai H N, Chen C, Wen J H, et al. Personalized location recommendation algorithm research based on user check-ins and geographical properties. Comput Sci, 2016, 43: 163--167 . Google Scholar
[9] Wang X. Action recognition using topic models. In: Visual Analysis of Humans. London: Springer, 2011. 311--332. Google Scholar
[10] Yang D, Zhang D, Yu Z, et al. Fine-grained preference-aware location search leveraging crowdsourced digital footprints from LBSNs. In: Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing, New York, 2013. 479--488. Google Scholar
[11] Yin P, Ye M, Lee W C, et al. Mining GPS data for trajectory recommendation. In: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining, London, 2014. 50--61. Google Scholar
[12] Feng S, Li X, Zeng Y, et al. Personalized ranking metric embedding for next new POI recommendation. In: Proceedings of the International Joint Conference on Artificial Intelligence, Menlo Park, 2015. 2069--2075. Google Scholar
[13] Zhou N, Zhao W X, Zhang X. A General Multi-Context Embedding Model for Mining Human Trajectory Data. IEEE Trans Knowl Data Eng, 2016, 28: 1945-1958 CrossRef Google Scholar
[14] Xie M, Yin H, Wang H, et al. Learning graph-based POI embedding for location-based recommendation. In: Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, New York, 2016. 15--24. Google Scholar
[15] Mikolov T, Chen K, Corrado G, et al. Efficient estimation of word representations in vector space,. arXiv Google Scholar
[16] Hinton G E. Learning distributed representations of concepts. In: Proceedings of the 8th Annual Conference of the Cognitive Science Society, London, 1986. 1--12. Google Scholar
[17] Mikolov T. Statistical language models based on neural networks. Google, 2012. http://www.fit.vutbr.cz/ imikolov/rnnlm/google.pdf. Google Scholar
[18] Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model. J Mach Learn Res, 2003, 3: 1137--1155. Google Scholar
[19] Le Q V, Mikolov T. Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on Machine Learning, Beijing, 2014. 1188--1196. Google Scholar
[20] Boyd S, Vandenberghe L. Convex Optimization. Cambridge: Cambridge University Press, 2004. 466--468. Google Scholar
[21] Mikolov T, Sutskever I, Chen K, et al. Distributed representations of words and phrases and their compositionality. Adv Neural Inf Proc Syst, 2013, 26: 3111--3119. Google Scholar
Figure 1
(Color online) Loc2Vec model network structure diagram
Figure 4
(Color online) Error distance statistic diagram of abnormal data
Figure 5
Semantic analysis framework of spatial temporal trajectory
Figure 6
(Color online) Location vector $K$-means clustering distribution ($K$=10). (a) Absolute number; (b) relative proportion
Figure 7
(Color online) Location vector $K$-means clustering geographic map. (a) All points; (b) top-30 points
Figure 8
(Color online) Location vector hierarchical clustering diagrams. (a) Hierarchical clustering dendrogram; (b) clustering geographic map
|
---|
|
$e = 0$; |
${\rm SL} = \sum_{k=i-c}^{2c}{\rm Context}(L_{t_k}) \in \mathbb{R}^m$; |
|
$g = \alpha[1-h_k-\sigma({\rm SL}^{\rm T}\theta_{k-1})]$; |
$e = e+ g\cdot\theta_{k-1}$; |
$\theta_{k-1} = \theta_{k-1}+g\cdot {\rm SL}$; |
|
|
$\widetilde{L_{t_i}} = \widetilde{L_{t_i}}+e$; |
|
|
Symbol | Definition |
$p$ | The path from the root node to the leaf node $L_{t_i}$ |
$l$ | The number of nodes contained in the path $p$ |
$p_1, p_2,\ldots, p_l$ | $l$ nodes in the path $p$, where $p_1$ is the root node and $p_l$ is the leaf node |
$h_2, h_3,\ldots,h_l \in \{0, 1\}$ | Leaf node $L_{t_i}$ in the path $p$ corresponds to the Huffman Coding, |
where $h_k$ represents the $k$th code, $p_1$ is not encoded | |
$\theta_1, \theta_2,\ldots, \theta_l \in \mathbb{R}^m$ | The vectorization of the non-leaf node in the path $p$, |
where $\theta_k$ represents the mapping vector for the $k^{th}$ non-leaf node |
Attribute name | CHS name | Example |
User ID (anonymized) | 匿名用户代码 | 32 |
Venue ID* | 签到街道代码 | 44af9feef964a5202b351fe3 |
Venue category ID* | 街道类型代码 | 4bf58dd8d48988d1c1941735 |
Venue category name* | 街道类别名称 | Mexican Restaurant |
Latitude, Longitude | 经纬度坐标 | 40.747738169430534, $-$73.98519814526952 |
Time zone offset in minutes | UTC时差 | $-$240 |
UTC time | 世界标准时间 | Tue Apr 03 18:15:33 +0000 2012 |
Category | CHS name | Amount | Example |
Food | 餐饮类 | 67 | Restaurant; Joint |
Shop & service | 商贸服务类 | 61 | Shop; Store; Service |
Outdoors & recreation | 户外休闲类 | 26 | Beach; Garden |
Travel & transport | 旅游交通类 | 22 | Airport; Travel lounge |
Public service | 公共服务类 | 21 | Bank; Temple |
Education | 教育类 | 20 | School; College |
Arts & entertainment | 艺术娱乐类 | 20 | Museum; Venue |
Industry | 产业制造类 | 7 | Factory; Facility |
Athletic & sport | 体育运动类 | 4 | Gym; Stadium |
Community | 社区类 | 3 | Home; Neighborhood |
Type | VID | LAT (Latitude) | LON (Longitude) | Offset (m) |
Same GPS | 4b992b04f964a520726635e3 | 40.683120 | $-$73.975979 | 0 |
5089d4bce4b0f6951cdeb4f0 | ||||
Same ID | 41390580f964a520dc1a1fe3 | 40.7420160433638 | $-$74.005163366761 | 5.876 |
40.7419894750989 | $-$74.0051174588942 |
Parameter | CHS name | Corresponding parameter | Defaults |
size | 向量维数 | $m$ | 100 |
window | 训练窗口大小 | 2$c$ | 5 |
sample | 高频降采样阈值 | – | 1E$-$3 |
negative | 负例采样数 | – | 5 |
threads | 程序线程数 | – | 12 |
min-count | 低频词截断阈值 | – | 5 |
alpha | 初始学习速率 | $\alpha$ | 0.05 |
iter | 迭代次数 | – | 5 |
Type | Distance | VID | Category | VCN | GPS | GEO |
distance | ||||||
Single | 0.674 | 4b546885f964a52031ba27e3 | Food | Food & drink shop | 35.654 139.544 | 24.828 |
Single | 0.638 | 4bea5deb6295c9b6c05b8608 | Education | College | 35.656 139.544 | 230.291 |
academic building | ||||||
Single | 0.631 | 4b6f7d59f964a520a7f22ce3 | Education | University | 35.657 139.541 | 400.026 |
24 h | 0.682 | 4ec09a4fbe7b04923ccd270d | Outdoors & | Sculpture garden | 35.657 139.544 | 424.540 |
Recreation | ||||||
24 h | 0.678 | 4b698217f964a5202ea52be3 | Food | Chinese restaurant | 35.653 139.544 | 63.646 |
Workdays | 0.680 | 4cca4775177c370483661534 | Education | College | 35.658 139.544 | 468.477 |
academic building | ||||||
Workdays | 0.645 | 4ffee5dde4b04497d91e7c4c | Community | Home (private) | 35.669 139.553 | 1806.987 |
Weekends | 0.685 | 4b5a88f1f964a52036ca28e3 | Shop & Service | Video store | 35.652 139.546 | 143.953 |
Weekends | 0.612 | 4cb598229c7ba35db53c8b06 | Outdoors & Recreation | Bar | 35.651 139.543 | 337.812 |
Type | AVG distance (m) | SD |
Single | 251.205 | 150.886 |
24 h | 274.516 | 121.610 |
Workdays | 462.714 | 489.566 |
Weekends | 698.784 | 608.596 |