logo

SCIENTIA SINICA Informationis, Volume 47 , Issue 10 : 1369-1380(2017) https://doi.org/10.1360/N112016-00294

Research on multi-scale reconstruction of water surfaces based on reflectance

More info
  • ReceivedDec 21, 2016
  • AcceptedFeb 4, 2017
  • PublishedAug 25, 2017

Abstract


Funded by

国家自然科学基金(61173067,61379085,61532002,61300131)

国家高技术研究发展计划(863计划)(2015A A016401)


References

[1] Murase H. Surface shape reconstruction of a nonrigid transport object using refraction and motion. IEEE Trans Pattern Anal Machine Intell, 1992, 14: 1045-1052 CrossRef Google Scholar

[2] Morris N J W, Kutulakos K N. Dynamic Refraction Stereo.. IEEE Trans Pattern Anal Mach Intell, 2011, 33: 1518-1531 CrossRef PubMed Google Scholar

[3] Ihrke I, Goidluecke B, Magnor M. Reconstructing the geometry of flowing water. In: Proceedings of IEEE International Conference on Computer Vision, Beijing, 2005. 1055--1060. Google Scholar

[4] Wang H, Liao M, Zhang Q, et al. Physically guided liquid surface modeling from videos. ACM Trans Graph, 2009, 28: 90--99. Google Scholar

[5] Sagawa R, Kawasaki H, Kiyota S, et al. Dense one-shot 3D reconstruction by detecting continuous regions with parallel line projection. In: Proceedings of IEEE International Conference on Computer Vision, Barcelona, 2011. 1911--1918. Google Scholar

[6] Gregson J, Krimerman M, Hullin M B, et al. Stochastic tomography and its applications in 3D imaging of mixing fluids. ACM Trans Graph, 2012, 31: 1--10. Google Scholar

[7] Yezzi A, Bonet G G. Variational image processing algorithms for the stereoscopic space-time reconstruction of water waves. Dissertation for Ph.D. Degree. Georgia: Georgia Institute of Technology, 2011. Google Scholar

[8] Pickup D, Li C, Cosker D, et al. Reconstructing mass-conserved water surfaces using shape from shading and optical flow. In: Proceedings of Asian Conference on Computer Vision, Queenstown, 2010. 189--201. Google Scholar

[9] Chuan Li , Pickup D, Saunders T. Water surface modeling from a single viewpoint video.. IEEE Trans Visual Comput Graphics, 2013, 19: 1242-1251 CrossRef PubMed Google Scholar

[10] Quan H, Wang C, Song Y. Fluid re-simulation based on physically driven model from video. Vis Comput, 2017, 33: 85-98 CrossRef Google Scholar

[11] Wang C, Wang C, Qin H. Video-based fluid reconstruction and its coupling with SPH simulation. Vis Comput, 2017, 33: 1211-1224 CrossRef Google Scholar

[12] Takahashi T, Fujii H, Kunimatsu A. Realistic Animation of Fluid with Splash and Foam. Comput Graphics Forum, 2003, 22: 391-400 CrossRef Google Scholar

[13] Ihmsen M, Akinci N, Akinci G. Unified spray, foam and air bubbles for particle-based fluids. Vis Comput, 2012, 28: 669-677 CrossRef Google Scholar

[14] Langlois T R, Zheng C, James D L. Toward animating water with complex acoustic bubbles. ACM Trans Graph, 2016, 35: 95--107. Google Scholar

[15] Barron J T, Malik J. Shape, Illumination, and Reflectance from Shading.. IEEE Trans Pattern Anal Mach Intell, 2015, 37: 1670-1687 CrossRef PubMed Google Scholar

[16] Yang J, Deng Z P, Guo Y K, et al. Two new approaches for illuminant direction estimation. J Shanghai Jiaotong Univ, 2002, 36: 894--896. Google Scholar

[17] Huang J, Lee A B, Mumford D. Statistics of range images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head Island, 2000. 324--331. Google Scholar

[18] Woodford O, Torr P, Reid I. Global stereo reconstruction under second-order smoothness priors.. IEEE Trans Pattern Anal Mach Intell, 2009, 31: 2115-2128 CrossRef PubMed Google Scholar

[19] Besl P J, Jain R C. Segmentation through variable-order surface fitting. IEEE Trans Pattern Anal Machine Intell, 1988, 10: 167-192 CrossRef Google Scholar

[20] Terzopoulos D. Image analysis using multigrid relaxation methods. IEEE Trans Pattern Anal Mach Intell, 1986, 2: 129--139. Google Scholar

[21] Liu D C, Nocedal J. On the limited memory BFGS method for large scale optimization. Math Programming, 1989, 45: 503-528 CrossRef Google Scholar

[22] Liu Y X, Su X Q, Wang P. Image matching based on local projection entropy. Acta Photonica Sin, 2004, 33: 105--108. Google Scholar

[23] Ping-Sing T, Shah M. Shape from shading using linear approximation. Image Vision Computing, 1994, 12: 487-498 CrossRef Google Scholar

[24] Efros A A, Freeman W T. Image quilting for texture synthesis and transfer. In: Proceedings of ACM Conference on Computer Graphics and Interactive Techniques, Los Angeles, 2001. 341--346. Google Scholar

[25] Vincent L, Soille P. Watersheds in digital spaces: an efficient algorithm based on immersion simulations. IEEE Trans Pattern Anal Machine Intell, 1991, 13: 583-598 CrossRef Google Scholar

[26] Péteri R, Fazekas S, Huiskes M J. DynTex: A comprehensive database of dynamic textures. Pattern Recognition Lett, 2010, 31: 1627-1632 CrossRef Google Scholar

[27] Pentland A. Shape information from shading: A theory about human perception. Spatial Vis, 1989, 4: 165-182 CrossRef Google Scholar