logo

SCIENTIA SINICA Informationis, Volume 47 , Issue 12 : 1730-1740(2017) https://doi.org/10.1360/N112016-00257

A semi-empirical model of the drain/source resistance for MOSFET

More info
  • ReceivedNov 5, 2016
  • AcceptedFeb 6, 2017
  • PublishedJul 14, 2017

Abstract


Funded by

国家自然科学基金(61076086,61376098)


References

[1] Hu C C. Modern Semiconductor Devices for Integrated Circuits. Beijing: Publishing House of Electronics Industry, 2012. 168--171. Google Scholar

[2] Stephen D S. Microsystem Design. Beijing: Publishing House of Electronics Industry, 2004. 182. Google Scholar

[3] Bae H, Jang J, Shin J S, et al. Modeling and separate extraction of gate-bias- and channel-length-dependent intrinsic and extrinsic source drain resistances in MOSFETs. IEEE Electron Device Lett, 2011, 32: 722--724. Google Scholar

[4] Chang Y H, Liu Y J. A new extraction method for source/drain resistance in MOSFETs. In: Proceedings of the 10th IEEE International Conference Solid-State and Integrated Circuit Technology (ICSICT), Shanghai, 2010. 1910--1912. Google Scholar

[5] Chen L, Sun L L, Liu J. Surface-potential-based analysis of bias-dependent series resistance in LDD MOSFET. In: Proceedings of IEEE 8th International Conference ASIC, Changsha, 2009. 1244--1246. Google Scholar

[6] He P, Ke D, Hu P. Two-dimensional physically based semi-analytical model of source/drain series resistance in MOSFETs. Japanese J Appl Phys, 2015, 55: 014302. Google Scholar

[7] Ng K K, Lynch W T. The impact of intrinsic series resistance on MOSFET scaling. IEEE Trans Electron Device, 1986, 34: 27--28. Google Scholar

[8] Shur M, Rumyantsev S, Levinshtein M. SiC Materials and Devices. Beijing: Publishing House of Electronics Industry, 2012. 60--61. Google Scholar

[9] 甘学温, 黄如, 刘晓彦, 等. 纳米CMOS器件. 北京: 科学出版社, 2004. 50. Google Scholar

[10] 陈纪修, 於崇华, 金路. 数学分析(第二版)上册. 北京: 高等教育出版社, 2004. 290--291. Google Scholar

[11] Taur Y, Ning T H.Fundamentals of Modern VLSI Devices. New York: Cambridge University Press, 1998. 244. Google Scholar

[12] Yang L A, Yu C L, Hao Y. Channel resistance method for parameter extraction of ultra-thin gate oxide LDD MOSFETs. In: Proceedings of the 8th International Conference on Solid-State and Integrated Circuit Technology, Shanghai, 2006. 1373--1375. Google Scholar

[13] Zhao Y, Parke S, Burkr F. Modeling and characterization of deep-submicron MOSFET with short-channel effect based on BSIMTM. Acta Electron Sin, 2004, 5: 841--844. Google Scholar

[14] Arora N. MOSFET Models for VLSI Circuit Simulation Theory and Practice. Beijing: Science Press, 1999. 631--632. Google Scholar

[15] Burden R L, Faires J D. Numerical Analysis. 7th ed. Beijing: Higher Education Press, 2005. 432--440. Google Scholar

[16] 周省三. 电磁场基本教程. 北京: 高等教育出版社, 1987. 76--81. Google Scholar

  • Figure 1

    The structure diagram of MOSFET. (a) MOSFET used in thecalculation; (b) modern MOSFET with silicide

  • Figure 2

    The schematic diagram of drain / source differentialresistance

  • Figure 3

    (a) is comparison of simulation values of drain /source resistance and formula calculation when $l_{2~}$changed and channellength is 1000$\sim$2000 nm, $l$=1.6 $\mu~$m, $l_{1}=$ 0.01 $\mu~$m, $\rho~$$=$ 10 $\Omega~\cdot\mu~$m. The maximum error of (eq8) is 5% and for(8) is 5% (b) is simulation results of drain / source resistance when$l_{2}$ changed and channel length is 120$\sim$200 nm, $l=$ 1.6 $\mu~$m,$l_{1}=$ 0.01 $\mu~$m, $\rho~$$=$ 10 $\Omega~\cdot\mu~$m. The maximum error of(eq8) is 5.9% and for (12) is 8%

  • Figure 4

    (a) is comparison of simulation values of drain/sourceresistance and formula calculation when $\rho~$changed and channel lengthis 45$\sim$80 nm, $l=$ 1.6 $\mu~$m, $l_{1}=$ 0.01 $\mu~$m, $l_{2}=$ 0.9 $\mu~$m. Themaximum error of (eq8) is 6.6% and for (16) is9% (b) is simulation results of drain/source resistance whenchanged and channel length is 120$\sim$200 nm, $l=$ 1.6 $\mu~$m, $l_{1}=$ 0.01 $\mu$m, $l_{2}=$ 0.9 $\mu~$m. The maximum error of (eq8) is 7.7% andfor (12) is 5%

  • Figure 5

    (a) is comparison of simulation values of drain/sourceresistance and formula calculation when $d$ changed and channel length is 45$\sim$80 nm, $l=$ 1.6 $\mu~$m, $l_{1}=$ 0.01 $\mu~$m, $\rho~$$=$ 8 $\Omega~\cdot\mu~$m. Themaximum error of (eq8) is 6.9% and for (16) is8.6% (b) is simulation results of drain/source resistance when$l_{2}$ changed and channel length is 120$\sim$200 nm, $l=$ 1.6 $\mu~$m,$l_{1}=$ 0.01 $\mu~$m, $\rho~$$=$ 10 $\Omega~\cdot\mu~$m The maximum error of(eq8) is 3.9% and for (12) is 8.5%

  • Figure 6

    (a) is comparison of simulation values of drain/sourceresistance and formula calculation when changed and channel length is 45$\sim$80 nm, $l=$ 1.6 $\mu~$m, $l_{1}=$ 0.01 $\mu~$m, $\rho~$$=$ 8 $\Omega~\cdot\mu~$m. Themaximum error of (eq8) is 6.9% and for (16) is9.5% (b) is simulation results of drain/source resistance whenchanged and channel length is 120$\sim$200 nm, 45$\sim$80 nm, $l=$ 1.6 $\mu~$m,$l_{1}=$ 0.01 $\mu~$m, $\rho~$$=$ 10 $\Omega~\cdot\mu~$m. The maximum error of(eq8) is 3.9% and for (12) is 8.5%

  • Figure 7

    (a) is the structure that channel length is 120$\sim$200 nm, $l=$ 1.6$\mu~$m, $l_{1}=$ 0.01 $\mu~$m, $\rho~$$_{1}=$ 10 $\Omega~\cdot\mu~$m, $\rho~$$_{2}=$ protectłinebreak 100 $\Omega~\cdot\mu~$m, $a=$ 0.01 $\mu~$m, $d=$ 0.002 $\mu~$m. (b) is comparison of simulationresults of normal MOSFETs and LDD-MOSFETs drain/source resistance when $l_2$changed and $d$ is 0.02 $\mu~$m, 0.01 $\mu~$m and 0.005 $\mu~$m respectively. Themaximum error of (eq8) is 8.4% and for (12) is8.5%

  • Table 1   The semi physical semi empirical formula of drain/source resistance between the different channel sections
    Channel length (nm) Formulas that the unit of length is $\mu$m Formulas of international unit system
    (the unit of length is $m$)
    980$\sim$1980 $R_{\rm~DS}~=~\rho~^{0.76}\dfrac{6.87~\cdot~l_2~}{d^{0.6}}$ (8) $R_{\rm~DS}~=~\rho~^{0.76}\dfrac{5.9334\times~10^7~\cdot~l_2~}{d^{0.6}}$ (9)
    580$\sim$980 $R_{\rm~DS}~=~\rho~^{0.77}\dfrac{6.27~\cdot~l_2~}{d^{0.63}}$ (10) $R_{\rm~DS}~=~\rho~^{0.77}\dfrac{4.2173\times~10^7~\cdot~l_2~}{d^{0.63}}$ (11)
    120$\sim$200 $R_{\rm~DS}~=~\rho~^{0.82}\dfrac{3.63~\cdot~l_2~}{d^{0.8}}$ (12) ${{R}_{\rm~DS}}={{\rho~}^{0.82}}\dfrac{4.6832\times~{{10}^{6}}\cdot~{{l}_{2}}}{{{d}^{0.8}}}$ (13)
    80$\sim$120 ${{R}_{\rm~DS}}={{\rho~}^{0.82}}\dfrac{5.40\cdot~{{l}_{2}}}{{{d}^{0.72}}}$ (14) ${{R}_{\rm~DS}}={{\rho~}^{0.82}}\dfrac{2.0555\times~{{10}^{7}}\cdot~{{l}_{2}}}{{{d}^{0.72}}}$ (15)
    45$\sim$80 ${{R}_{\rm~DS}}={{\rho~}^{0.83}}\dfrac{9.21\cdot~{{l}_{2}}}{{{d}^{0.58}}}$ (16) ${{R}_{\rm~DS}}={{\rho~}^{0.83}}d\dfrac{1.3322\times~{{10}^{7}}\cdot~{{l}_{2}}}{{{d}^{0.58}}}$ (17)