SCIENTIA SINICA Informationis, Volume 47 , Issue 3 : 374-384(2017) https://doi.org/10.1360/N112016-00166

A novel covert communication system based on symmetric ${\alpha}$-stable distribution

More info
  • ReceivedJul 4, 2016
  • AcceptedAug 31, 2016
  • PublishedJan 12, 2017


Funded by







[1] Wei H, Zheng B, Hou X. Compressive channel sensing based on random pilot for physical layer communication security. In: Proceedings of IEEE 22nd Wireless and Optical Communication Conference, Chongqing, 2013. 693-698. Google Scholar

[2] Mukherjee A, Fakoorian S A A, Huang J, et al. Principles of physical layer security in multiuser wireless networks: a survey. IEEE Commun Surv Tut, 2014, 16: 1550-1573 CrossRef Google Scholar

[3] Zhao D F, Zhu T L, Xue R. Parallel decoding of Turbo codes in covert communications. J Appl Sci, 2012, 30: 461-465 [赵旦峰, 朱铁林, 薛睿. 隐蔽通信中的Turbo 码并行译码. 应用科学学报, 2012, 30: 461-465]. Google Scholar

[4] Narayanan R M, Chuang J. Covert communications using heterodyne correlation random noise signals. Electron Lett, 2007, 43: 1211-1212 CrossRef Google Scholar

[5] Salberg A B, Hanssen A. Secure digital communications by means of stochastic process shift keying: principles and properties. In: Proceedings of Conference Record of the 33rd Asilomar Conference on Signals, Systems, and Computers, Asker, 1999. 48-53. Google Scholar

[6] Shao M, Nikias C L. Signal processing with fractional lower order moments: stable processes and their applications. Proc IEEE, 1993, 81: 986-1010 CrossRef Google Scholar

[7] Nikias C L, Shao M. Signal Processing With Alpha-Stable Distributions and Applications. Hoboken: John Wiley & Sons, 1995. Google Scholar

[8] Gulati K, Evans B L, Andrews J G, et al. Statistics of co-channel interference in a field of Poisson and Poisson-Poisson clustered interferers. IEEE Trans Signal Process, 2010, 58: 6207-6222 CrossRef Google Scholar

[9] Lee J, Tepedelenlioglu C. Distributed detection in coexisting large-scale sensor networks. IEEE Sens J, 2014, 14: 1028-1034 CrossRef Google Scholar

[10] Zhou Y F, Li R P, Zhao Z F, et al. On the $\alpha$-stable distribution of base stations in cellular networks. IEEE Commun Lett, 2015, 19: 1750-1753 CrossRef Google Scholar

[11] Li R P, Zhao Y F, Qi C, et al. Understanding the traffic nature of mobile instantaneous messaging in cellular networks: a revisiting to $\alpha$-stable models. IEEE J Mag, 2015, 3: 1416-1422. Google Scholar

[12] Chiaraviglio L, Cuomo F, Maisto M, et al. What is the best spatial distribution to model base station density? A deep dive into two European mobile networks. IEEE Access, 2016, 4: 1434-1443 CrossRef Google Scholar

[13] Laguna-Sanchez G, Lopez-Guerrero M. On the use of alpha-stable distributions in noise modeling for PLC. IEEE Trans Power Delivery, 2015, 30: 1863-1870 CrossRef Google Scholar

[14] Achim A, Basarab A, Tzagkarakis G, et al. Reconstruction of ultrasound RF echoes modeled as stable random variables. IEEE Trans Comput Imag, 2015, 1: 86-95 CrossRef Google Scholar

[15] Shen X, Zhang H, Xu Y, et al. Observation of alpha-stable noise in the laser gyroscope data. IEEE Sens J, 2016, 16: 1998-2003 CrossRef Google Scholar

[16] Chen J, Nunez-Yanez J L, Achim A. Bayesian video super-resolution with heavy-tailed prior models. IEEE Trans Circ Syst Video Tech, 2014, 24: 905-914 CrossRef Google Scholar

[17] Cek M E, Savaci F A. Stable non-Gaussian noise parameter modulation in digital communication. Electron Lett, 2009, 45: 1256-1257 CrossRef Google Scholar

[18] Gonzalez J G, Paredes J L, Arce G R. Zero-order statistics: a mathematical framework for the processing and characterization of very impulsive signals. IEEE Trans Signal Process, 2006, 54: 3839-3851 CrossRef Google Scholar

[19] He J A, Pei C Q, Pu Y Y. Cyclic spectrum analysis of BPSK under a non-Guassian model. J Lanzhou Univ (Nat Sci), 2012, 48: 133-138 [何继爱, 裴承全, 蒲阳阳. 非Gauss模型下BPSK的循环谱分析. 兰州大学学报(自然科学版), 2012, 48: 133-138]. Google Scholar

[20] Zhao C H, Yang W C, Ma S. Research on communication signal modulation recognition based on the generalized second-order cyclic statistics. J Commun, 2011, 32: 144-150 [赵春晖, 杨伟超, 马爽. 基于广义二阶循环统计量的通信信号调制识别研究. 通信学报, 2011, 32: 144-150]. Google Scholar

[21] Zhang X L, Xu J T, Chen Y S. Detection of BPSK DS signal based on cyclic spectrum correlation technology. Inf Tech, 2004, 28: 30-32 [张晓林, 徐建太, 陈源胜. 基于循环谱理论的BPSK直扩信号检测. 信息技术, 2004, 28: 30-32]. Google Scholar

[22] Zhao G L, Wu Y N. An analysis of the interleavers for Turbo codes. J Appl Sci, 2002, 20: 38-41 [赵光玲, 吴乐南. 几种用于Turbo码的交织器分析. 应用科学学报, 2002, 20: 38-41]. Google Scholar

[23] Zha D F, Shu T, Chen D, et al. Robust blind shallow water channel equalizer based on fractional lowes order impulsivenoise model. J Commun, 2008, 29: 133-138 [査代奉, 舒彤, 陈丁, 等. 基于分数低阶脉冲噪声模型的浅海水声信道盲均衡方法. 通信学报, 2008, 29: 133-138]. Google Scholar

[24] Xu Z J, Wang K, Gong Y, et al. Structure and performance analysis of an S$\alpha$S-based digital modulation system. IET Commun, 2016, 10: 1329-1339 CrossRef Google Scholar