logo

SCIENTIA SINICA Informationis, Volume 47 , Issue 1 : 47-57(2017) https://doi.org/10.1360/N112016-00136

What kind of plant is better for control? An analysis and conjecture using the degree of controllability}{What kind of plant is better for control? An analysis and conjecture using the degree of controllability

More info
  • ReceivedMay 25, 2016
  • AcceptedAug 2, 2016
  • PublishedDec 14, 2016

Abstract


Funded by

国家自然科学基金(61174038)

国家自然科学基金(61573186)

国家自然科学基金(61673213)

国家自然科学基金(51507080)

中央高校基本科研业务费专项资金(3091501 1104)


References

[1] Grigoriadis K M, Zhu G, Skelton R E. Optimal redesign of linear systems. J Dyn Syst-T ASME, 1996, 118: 598-605 CrossRef Google Scholar

[2] Haftka R T, Hallauer W L, Martinovic Z N. Enhanced vibration controllability by minor structural modifications. AIAA J, 1985, 23: 1260-1266 CrossRef Google Scholar

[3] Zhou P, Wang F Y, Chen W, et al. Optimal construction and control of flexible manipulators: a case study based on LQR output feedback. Mechatronics, 2001, 11: 59-77 CrossRef Google Scholar

[4] Haftka R T, Martinovic Z N, Hallauer W L, et al. Sensitivity of optimized control systems to minor structural modifications. In: Proceedings of the 26th Structures, Structural Dynamics and Material Conference, Orlando, 1985. 15-17. Google Scholar

[5] Guo L. Understanding the role and capability of feedback. Autom Panorama, 2003, 1: 1-3 [郭雷. 关于反馈的作用及能力的认识. 自动化博览, 2003, 1: 1-3]. Google Scholar

[6] Zhang Y, Guo L. A limit to the capability of feedback. IEEE Trans Auto Control, 2002, 47: 687-692 CrossRef Google Scholar

[7] Ma H B. Further results on limitations to the capability of feedback. Int J Control, 2008, 81: 21-42 CrossRef Google Scholar

[8] Huang C, Guo L. On feedback capability for a class of semiparametric uncertain systems. Automatica, 2012, 48: 873-878 CrossRef Google Scholar

[9] Ashari A E, Nikoukhah R, Campbell S L. Effects of feedback on active fault detection. Automatica, 2012, 48: 866-872 CrossRef Google Scholar

[10] Zhong R. The Selected Works of Winner. Shanghai: Shanghai Translation Publishing House, 1978 [钟韧. 维纳著作选. 上海: 上海译文出版社, 1978]. Google Scholar

[11] Qian X S. Engineering Cybernetics. Shanghai: Shanghai Jiao Tong University Press, 2007 [钱学森. 工程控制论. 上海: 上海交通大学出版社, 2007]. Google Scholar

[12] Li B S. The degree of controllability of attitude control system. Aerosp Control, 1984, 2: 1-8 [李宝绶. 姿控系统的能控度. 航天控制, 1984, 2: 1-8]. Google Scholar

[13] Soloway D I, Ouzts P J, Wolpert D H, et al. The role of guidance, navigation, and control in hypersonic vehicle multidisciplinary design and optimization. In: Proceedings of 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, 2009. 7329. Google Scholar

[14] Zhang Y, Lu Y P, Liu Y B, et al. Integrated control design of hypersonic vehicle. J Aerosp Pow, 2012, 12: 2724-2732 [张勇, 陆宇平, 刘燕斌, 等. 高超声速飞行器控制一体化设计. 航空动力学报, 2012, 12: 2724-2732]. Google Scholar

[15] Yang Z Q, Yin M H, Xia Y P, et al. The exploration of key aerodynamic parameters for an integrated design of wind turbine blades. In: Proceedings of the 33rd Chinese Control Conference, Nanjing, 2014. 7072-7076 [杨志强, 殷明慧, 夏亚平, 等. 考虑风力机一体化设计的叶片气动外形关键参数的探索. 第33 届中国控制大会, 南京, 2014. 7072-7076]. Google Scholar

[16] Yang Z Q, Yin M H, Chen X Y, et al. Multi-AOA optimization of variable-Speed wind turbine airfoils. In: Proceedings of TENCON 2016, IEEE Region 10 Conference, Singapore, 2016. Google Scholar

[17] Yang Z, Yin M, Xu Y, et al. A multi-point method considering the maximum power point tracking dynamic process for aerodynamic optimization of variable-Speed wind turbine blades. Energies, 2016, 9: 425-872 CrossRef Google Scholar

[18] Zhou P, Wang F, Chen W, et al. Optimal construction and control of flexible manipulators: a case study based on LQR output feedback. Mechatronics, 2001, 11: 59-77 CrossRef Google Scholar

[19] Haftka R T, Hallauer W L, Martinovic Z N. Enhanced vibration controllability by minor structural modifications. AIAA J, 1985, 23: 1260-1266 CrossRef Google Scholar

[20] Shirazi F A, Grigoriadis K M, Viassolo D. An integrated approach towards structural and LPV controller design in wind turbines. In: Proceedings of the American Control Conference, Canada, 2012. 5789-5794. Google Scholar

[21] Shirazi F A, Grigoriadis K M, Viassolo D. Wind turbine integrated structural and LPV control design for improved closed-loop performance. Int J Control, 2012, 85: 1178-1196 CrossRef Google Scholar

[22] Ji B C, Cong S. Optimal link group selection for triple inverted - pendulum. Comput Simulation, 2006, 23: 258-261 [姬北辰, 丛爽. 三级倒立摆系统最优摆杆长度组合选取的研究. 计算机仿真, 2006, 23: 258-261]. Google Scholar

[23] Lundström P, Skogestad S, Wang Z Q. Performance weight selection for H-infinity and $\mu$-control methods. Trans Inst Meas Control, 1991, 13: 241-252 CrossRef Google Scholar

[24] Moser A N. Designing controllers for flexible structures with H-infinity/mu-synthesis. IEEE Control Syst, 1993, 13: 79-89 CrossRef Google Scholar

[25] Xia Y P, Yin M H, Yang Z Q, et al. Investigation on the degree of controllability of wind turbines for the maximum power point tracking. In: Proceedings of the 33rd Chinese Control Conference, Nanjing, 2014. 2336-2341 [夏亚平, 殷明慧, 杨志强, 等. 关于最大功率点跟踪的风力机的能控度分析. 第33届中国控制大会, 南京, 2014. 2336-2341]. Google Scholar

[26] Xia Y P, Cai C X, Yin M H, et al. The effects of the distance to uncontrollability in redundant optimal control. In: Proceedings of the 33rd Chinese Control Conference, Nanjing, 2014. 9016-9021. Google Scholar

[27] Xia Y, Yin M, Cai C, et al. A new measure of the degree of controllability for linear system with external disturbance and its application to wind turbines. J Vib Control, 2016. doi: 10.1177/1077546316651558. Google Scholar

[28] Xia Y P, Cai C X, Yin M H, et al. The effects of redundant control inputs in finite-time optimal control. J Syst Sci Complex, 2016: 1-12. Google Scholar

[29] Zou Y, Cai C X. Integrated design viewpoint exploration: concept and approach of system controlity design. J Nanjing Univ Sci Technol, 2011, 35: 427-430 [邹云, 蔡晨晓. 一体化设计新视角: 系统的控制性设计概念与方法. 南京理工大学学报, 2011, 35: 427-430]. Google Scholar

[30] Viswanathan C N, Longman R W, Likins P W. A degree of controllability definition: fundamental concepts and application to modal systems. J Guid Control Dynam, 1984, 7: 222-230 CrossRef Google Scholar

[31] Hyounsurk R, Youngjin P. Actuator and exciter placement for flexible structures. J Guid Control Dynam, 1997, 20: 850-856 CrossRef Google Scholar

[32] Muller P C, Weber H I. Analysis and optimization of certain qualities of controllability and observability for linear dynamical systems. Automatica, 1972, 8: 237-246 CrossRef Google Scholar

[33] Eising R. Between controllable and uncontrollable. Syst Control Lett, 1984, 4: 263-264 CrossRef Google Scholar

[34] Kalman R E. Canonical structure of linear dynamical systems. Proc Natl Acad Sci U S A, 1962, 48: 596-600 CrossRef Google Scholar

[35] Paige C C. Properties of numerical algorithms related to computing controllability. IEEE Trans Autom Control, 1981, AC-26: 130-138. Google Scholar

[36] Nguyen K S, Do D T. The structured distance to non-surjectivity and its application to calculating the controllability radius of descriptor systems. J Mathem Analys Appl, 2012, 388: 272-281 CrossRef Google Scholar

[37] Zhang H, Sun Y X. Bode integrals and laws of variety in linear control systems. In: Proceedings of the American Control Conference, Colorado, 2003. 66-70. Google Scholar

[38] Zhang H. Information descariptions and approaches in control systems. Dissertation for Ph.D. Degree. Hanzhou: Zhejiang University, 2003 [章辉. 控制系统中的信息描述与方法. 博士学位论文. 杭州: 浙江大学, 2003]. Google Scholar

[39] Callier F M, Desoer C A. Linear System Theory. New York: Springer Science & Business Media, 2012. Google Scholar

[40] Guillemin E A. Theory of Linear Physical Systems. New York: Dover, 2013. Google Scholar

[41] Brockett R W. Finite dimensional linear systems. IEEE Trans Automat Contr Ac, 1970, 17: 753-754. Google Scholar

[42] Xia Y P. What kind of plant is better for control? --an exploration via the degree of controllability. Dissertation for Ph.D. Degree. Nanjing: Nanjing University of Science and Technology, 2016 [夏亚平. 怎样的受控对象更好控制? ---基于能控度视角的探索. 博士学位论文. 南京: 南京理工大学, 2016]. Google Scholar

[43] Chen Q Z. Theory and Design of Linear System. Beijing: Science Press, 1988 [陈启宗. 线性系统理论与设计. 北京: 科技出版社, 1988]. Google Scholar

[44] Longman R W, Alfrined K T. Actuator placemant from degree of controllability criteria for regular slewing of flexible spacecraft. Acta Astronaut, 1981, 8: 703-718 CrossRef Google Scholar

[45] Zhang X M, Shao C J, Shen S W. Optimal placement of sensors and actuators for vibration control of elastic linkage mechanisms. J Vibration Engineering, 2001, 14: 211-214 [张宪民, 邵长健, 沈允文. 弹性连杆机构振动主动控制中作动器与传感器的位置优化. 振动工程学报, 2001, 14: 211-214]. Google Scholar

[46] He C, Gu S N. Modal degree of controllability and its computation methods for a structural control system. J Vib Eng, 1993, 6: 229-237 [何程, 顾松年. 结构控制系统的模态能控度及其计算方法. 振动工程学报, 1993, 6: 229-237]. Google Scholar

[47] Bai B E, Lin L X. The relative degree of controllability of attitude control system and the selection of installation parameters of actuator. Control Eng, 1982, 1 [白拜尔, 林来兴. 姿态控制系统的相对能控度和执行机构安装参数的选择. 控制工程, 1982, 1]. Google Scholar

[48] Viswanathan C N, Longman R W, Likins P W. A definition of degree of controllability-a criterion for actuator placement. In: Proceedings of dynamics and control of large flexible spacecraft, Blacksburg, 1979. 369-381. Google Scholar

[49] Laskin R A, Longman R W, Likins P W. A definition of the degree of controllability for fuel-optimal systems. In: Proceedings of dynamics and control of large flexible spacecraft, Blacksburg, 1981. 15-17. Google Scholar

[50] Klein G, Linberg R E, Longman R W. Computation of degree of controllability via system discretization. J Guid Control Dynam, 1982, 5: 583-588 CrossRef Google Scholar

[51] Duan Z S, Huang L, Yao Y, et al. On the effects of redundant control inputs. Automatica, 2012, 48: 2168-2174 CrossRef Google Scholar

[52] Duan Z S, Huang L, Yang Y. The effects of redundant control inputs in optimal control. Sci China Inf Sci, 2009, 52: 1973-1981 CrossRef Google Scholar

[53] Duan Z S, Huang L, Jiang Z P. On the effects of redundant control inputs in discrete-time systems. J Syst Sci Math Sci, 2012, 32: 1193-1206. Google Scholar

[54] Zhang X L. Investigation on maximum power point tracking of wind turbine under turbulence. Dissertation for Ph.D. Degree. Nanjing: Nanjing University of Science and Technology, 2014 [张小莲. 风机最大功率点跟踪的湍流影响机理研究与性能优化. 博士学位论文. 南京: 南京理工大学, 2014]. Google Scholar