SCIENTIA SINICA Informationis, Volume 47 , Issue 2 : 193-206(2017) https://doi.org/10.1360/N112016-00127

A new age of public-oriented Earth observation development}{A new age of public-oriented Earth observation development

More info
  • ReceivedMay 13, 2016
  • AcceptedDec 9, 2016
  • PublishedFeb 10, 2017


Funded by

中国科学院数字地球重点实验室主任基金 海南省重大科技计划项目(ZDKJ2016021)


[1] Gore A. The digital earth: understanding our planet in the 21st century. Australian Surveyor, 1998, 43: 89-91 CrossRef Google Scholar

[2] Chen S P, Guo H D. Digital earth and earth observation. Acta Geograph Sin, 2000, 55: 9-14 [陈述彭, 郭华东. ``数字地球"与对地观测. 地理学报, 2000, 55: 9-14]. Google Scholar

[3] Greenslade D, Berkhout F. Future earth -- research for global sustainability. In: Proceedings of EGU General Assembly Conference, Vienna, 2014. 312-316. Google Scholar

[4] Guo H D. Big data, big science, big discovery -- review of CODATA Workshop on Big Data for International Scientific Programmes. Bull Chin Acad Sci, 2014, 29: 500-506 [郭华东. 大数据 大科学 大发现---大数据与科学发现国际研讨会综述. 中国科学院院刊, 2014, 29: 500-506]. Google Scholar

[5] Frosch R A, Gallopoulos N E. Strategies for manufacturing. Sci American, 1989, 261: 144-152. Google Scholar

[6] Porter M E. The competitive advantage of nations. Harvard Bus Rev, 1990, 68: 73-93. Google Scholar

[7] Lohr S. The age of big data. New York Times, 2012, 11. Google Scholar

[8] Labrinidis A, Jagadish H V. Challenges and opportunities with big data. Proc VLDB Endowment, 2012, 5: 2032-2033 CrossRef Google Scholar

[9] Barwick H. The ``four vs" of big data. http://www.computerworld.com.au/article/396198/iiis\_four\_vs\_big\_data/, 2012. Google Scholar

[10] Mayer-Schönberger V, Cukier K. Big Data: A Revolution That Will Transform How We Live, Work, and Think. Boston: Houghton Mifflin Harcourt, 2013. 1-45. Google Scholar

[11] Niu S. Big data strategy and its influence in developed countries. International Study Reference, 2014, 27: 29-33 [牛帅. 发达国家大数据战略及其影响. 国际研究参考, 2014, 27: 29-33]. Google Scholar

[12] Pulse U N G. Big Data for Development: Challenges & Opportunities. New York: UN Global Pulse, 2012. Google Scholar

[13] Mundial F E. Big Data, Big Impact: New Possibilities for International Development. Cologny: Foro Económico Mundial, 2012. Google Scholar

[14] House W. Big Data: Seizing Opportunities, Preserving Values. Washington: Exceutive Office of the President, 2014. Google Scholar

[15] Dutta S, Geiger T, Lanvin B. The global information technology report 2015. In: Proceedings of World Economic Forum, Davos Klosters, 2015. 80-85. Google Scholar

[16] Tolle K M, Tansley D, Hey A J G. The fourth paradigm: data-intensive scientific discovery. General Collect, 2012, 99: 1334-1337. Google Scholar

[17] Reichman O J, Jones M B, Schildhauer M P. Challenges and opportunities of open data in ecology. Science, 2011, 331: 703-705 CrossRef Google Scholar

[18] Marx V. Biology: the big challenges of big data. Nature, 2013, 498: 255-260 CrossRef Google Scholar

[19] Manyika J, Chui M, Brown B, et al. Big Data: the Next Frontier for Innovation, Competition, and Productivity. Las Vegas: The McKinsey Global Institute, 2011. 10-16. Google Scholar

[20] Gantz J, Reinsel D. The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east. IDC iView: IDC Analyze the Future, 2012. 1-16. Google Scholar

[21] CODATA中国全国委员会. 大数据时代的科研活动. 北京: 科学出版社, 2014. 2-5. Google Scholar

[22] He G J, Wang L Z, Ma Y, et al. Processing of earth observation big data: challenges and countermeasures. Chin Sci Bull, 2015, 60: 470-478 [何国金, 王力哲, 马艳, 等. 对地观测大数据处理: 挑战与思考. 科学通报, 2015, 60: 470-478]. Google Scholar

[23] Guo H D, Wang L Z, Chen F, et al. Scientific big data and digital earth. Chin Sci Bull, 2014, 59: 1047-1054 [郭华东, 王力哲, 陈方, 等. 科学大数据与数字地球. 科学通报, 2014, 59: 1047-1054]. Google Scholar

[24] Song W J, Liu P, Wang L Z, et al. Intelligent processing of remote sensing big data: status and challenges. J Eng Studies, 2014, 6: 259-265 [宋维静, 刘鹏, 王力哲, 等. 遥感大数据的智能处理: 现状与挑战. 工程研究- 跨学科视野中的工程, 2014, 6: 259-265]. Google Scholar

[25] 邢月亭, 孙广勃, 范桃英. 美协会发表卫星产业状况报告. 中国航天, 2015, (8): 34-39. Google Scholar

[26] Casey K S. Big data for a big ocean at the NOAA national oceanographic data center. AGU Fall Meeting Abstracts, 2014, 1: 3621. Google Scholar

[27] Li D R, Zhang L P, Xia G S, et al. Automatic remote sensing data analysis and data mining. Acta Geod Cartogr Sin, 2014, 43: 1211-1216 [李德仁, 张良培, 夏桂松, 等. 遥感大数据自动分析与数据挖掘. 测绘学报, 2014, 43: 1211-1216]. Google Scholar

[28] Li D R, Tong Q X, Li R X, et al. Current issues in high-resolution earth observation technology. Sci China Earth Sci, 2012, 42: 805-813 [李德仁, 童庆禧, 李荣兴, 等. 高分辨率对地观测的若干前沿科学问题. 中国科学: 地球科学, 2012, 42: 805-813]. Google Scholar

[29] Quartulli M, Olaizola I G. A review of EO image information mining. Isprs J Photogramm Remote Sens, 2013, 75: 11-28 CrossRef Google Scholar

[30] 詹亚锋, 马正新, 曹志刚. 现代微小卫星技术及发展趋势. 电子学报, 2000, 28: 102-106. Google Scholar

[31] Buchen E, DePasquale D. 2014 Nano/Microsatellite Market Assessment. Atlanta: SpaceWorks Enterprises, Inc.(SEI), 2014. Google Scholar

[32] 贠敏. 小卫星, 大星座, 改变未来空间游戏规则---第三届小卫星技术交流会 (2015) 召开. 卫星应用, 2015, 6: 72-73. Google Scholar

[33] 陆文墨. 建立互联网+ 天基信息实施服务系统--- 李德仁院士谈航天与互联网+ 的融合. 卫星与网络, 2015, 6: 14-18. Google Scholar

[34] 黄立钠, 景育, 朱文杰, 等. 在轨补加技术在小卫星上的应用. 卫星与网络, 2015, 6: 72-75. Google Scholar

[35] Murthy K, Shearn M, Smiley B D, et al. SkySat-1: very high-resolution imagery from a small satellite. Proc SPIE 9241, Sensors, Systems, and Next-Generation Satellites XVIII, 2014, 9241: 92411E. Google Scholar

[36] Sandau R, Roeser H P, Valenzuela A. Small Satellite Missions for Earth Observation. Berlin: Springer, 2010. Google Scholar

[37] Rosenberg Z. The coming revolution in orbit. Foreign Policy, 2014, 205: 70. Google Scholar

[38] Goodchild M F. Citizens as sensors: the world of volunteered geography. Geo J, 2007, 69: 211-221. Google Scholar

[39] Fiorito S, Orsi F, Serdoura F M, et al. Data extraction from social networks for urban analyses. Sedimentology, 2011, 58: 579-617 CrossRef Google Scholar

[40] Howe J. Crowdsourcing: how the power of the crowd is driving the future of business. New York: Random House, 2008. 20-35. Google Scholar

[41] George C E, Scerri J. Web 2.0 and user-generated content: legal challenges in the new frontier. Social Sci Electron Publishing, 2007, 2: 1-22. Google Scholar

[42] Boulos M N K, Wheeler S. The emerging Web 2.0 social software: an enabling suite of sociable technologies in health and health care education. Health Inf Libr J, 2007, 24: 2-23. Google Scholar

[43] Daugherty T, Eastin M S, Bright L. Exploring consumer motivations for creating user-generated content. J Interactive Advertising, 2008, 8: 16-25 CrossRef Google Scholar

[44] Law E, Ahn L. Human Computation. Morgan & Claypool Publishers, 2011. 1-121. Google Scholar

[45] Law E, von Ahn L. Input-agreement: a new mechanism for collecting data using human computation games. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Boston, 2009. 1197-1206. Google Scholar

[46] von Ahn L. Games with a purpose. Computer, 2006, 39: 92-94. Google Scholar

[47] Silvertown J. A new dawn for citizen science. Trends Ecol Evol, 2009, 24: 467-471 CrossRef Google Scholar

[48] Wang F Y, Carley K M, Zeng D, et al. Social computing: from social informatics to social intelligence. IEEE Intell Syst, 2007, 22: 79-83. Google Scholar

[49] Parameswaran M, Whinston A B. Research issues in social computing. J Assoc Inf Syst, 2007, 8: 336-350. Google Scholar

[50] Satyanarayanan M. Pervasive computing: vision and challenges. IEEE Pers Commun, 2001, 8: 10-17. Google Scholar

[51] Lee M R, Lan Y. From Web 2.0 to conversational knowledge management: towards collaborative intelligence. J Entrep Res, 2007, 2: 47-62. Google Scholar

[52] Hackman J R. Collaborative Intelligence: Using Teams to Solve Hard Problems. Oakland: Berrett-Koehler Publishers, 2011. Google Scholar

[53] Nieto M J, Santamar\'{\i}a L. The importance of diverse collaborative networks for the novelty of product innovation. Technovation, 2007, 27: 367-377 CrossRef Google Scholar

[54] Cebon P. Swarm creativity: competitive advantage through collaborative innovation networks. Innov Manage Policy Practice, 2006, 8: 407-408. Google Scholar

[55] Bloom H K. Global Brain: the Evolution of the Mass Mind From the Big Bang to the 21st Century. Hoboken: Wiley, 2000. 114. Google Scholar

[56] Obermeyer N J. The evolution of public participation GIS. American Cartograph, 1998, 25: 65-66 CrossRef Google Scholar

[57] Sieber R. Public participation geographic information systems: a literature review and framework. Ann Assoc American Geograph, 2006, 96: 491-507 CrossRef Google Scholar

[58] Li W L. Community remote sensing: a new approach to geoscience applications. Remote Sens Land Resour, 2013, 25: 1-6 [李万伦. 社区遥感: 一种地学应用新技术. 国土资源遥感, 2013, 25: 1-6]. Google Scholar

[59] Zhao Y, Han Q. Spatial crowdsourcing: current state and future directions. IEEE Commun Mag, 2016, 54: 102-107. Google Scholar

[60] Kazemi L, Shahabi C. Geocrowd: enabling query answering with spatial crowdsourcing. In: Proceedings of the 20th International Conference on Advances in Geographic Information Systems, Redondo Beach, 2012. 189-198. Google Scholar