logo

SCIENTIA SINICA Informationis, Volume 47 , Issue 3 : 337-350(2017) https://doi.org/10.1360/N112016-00112

Application of distributed consensus algorithm to maximize social welfare in a micro grid}{Application of distributed consensus algorithm to maximize social welfare in a micro grid

More info
  • ReceivedMay 5, 2016
  • AcceptedAug 23, 2016
  • PublishedDec 14, 2016

Abstract


Funded by

国家自然科学基金(61403313)

国家自然科学基金(61374078)

重庆市基础与前沿研究计划重点项目(cstc2015jcyjBX0052)

重庆市基础与前沿研究计划一般项目(cstc2014jcyjA40014)

中央高校基本科研业务费(XDJK2016B017)

中央高校基本科研业务费(XDJK2016 E032)

Qatar National Research Fund(NPRP 7-1482-1-278)


References

[1] Han H, Liu Y, Sun Y, et al. An improved droop control strategy for reactive power sharing in islanded microgrid. IEEE Trans Power Electron, 2015, 30: 3133-3141 CrossRef Google Scholar

[2] Zhao Z, Yang P, Guerrero J M, et al. Multiple-Time-Scales hierarchical frequency stability control strategy of medium-voltage isolated microgrid. IEEE Trans Power Electron, 2016, 31: 5974-5991. Google Scholar

[3] Li Y, Yong T, Cao J, et al. A consensus control strategy for dynamic power system look-ahead scheduling. Neurocomputing, 2015, 168: 1085-1093 CrossRef Google Scholar

[4] Palma-Behnke R, Benavides C, Lanas F, et al. A microgrid energy management system based on the rolling horizon strategy. IEEE Trans Smart Grid, 2013, 4: 996-1006. Google Scholar

[5] Sun Q Y, Zhang H G, Liu Z B. Fuzzy flow calculation in power distribution system and its convergence. Proc CSEE, 2008, 28: 46-50 [孙秋野, 张化光, 刘兆冰. 配电网模糊潮流计算方法及其收敛性研究. 中国电机工程学报, 2008, 28: 46-50]. Google Scholar

[6] Chanda S, De A. A multi-objective solution algorithm for optimum utilization of smart grid infrastructure towards social welfare. Int J Elec Power and Energy Syst, 2014, 58: 307-318 CrossRef Google Scholar

[7] Amin S M, Wollenberg B F. Toward a smart grid: power delivery for the 21st century. IEEE Power Energ Mag, 2005, 3: 34-41. Google Scholar

[8] Li Z, Wen G, Duan Z, et al. Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs. IEEE Trans Autom Control, 2015, 60: 1152-1157 CrossRef Google Scholar

[9] Tushar W, Chai B, Yuen C, et al. Three-party energy management with distributed energy resources in smart grid. IEEE Trans Ind Electron, 2015, 62: 2487-2498 CrossRef Google Scholar

[10] Mou S, Liu J, Morse A S. A distributed algorithm for solving a linear algebraic equation. IEEE Trans Autom Control, 2015, 60: 2863-2878 CrossRef Google Scholar

[11] Yi P, Hong Y, Liu F. Distributed gradient algorithm for constrained optimization with application to load sharing in power systems. Syst and Control Lett, 2015, 83: 45-52 CrossRef Google Scholar

[12] Xu Y, Li Z. Distributed optimal resource management based on the consensus algorithm in a microgrid. IEEE Trans Ind Electron, 2015, 62: 2584-2592 CrossRef Google Scholar

[13] Zhang Z, Chow M Y. Convergence analysis of the incremental cost consensus algorithm under different communication network topologies in a smart grid. IEEE Trans Power Syst, 2012, 27: 1761-1768 CrossRef Google Scholar

[14] Yang S, Tan S, Xu J X. Consensus based approach for economic dispatch problem in a smart grid. IEEE Trans Power Syst, 2013, 28: 4416-4426 CrossRef Google Scholar

[15] Cherukuri A, Cortés J. Distributed generator coordination for initialization and anytime optimization in economic dispatch. IEEE Trans Control Network Syst, 2015, 2: 226-237 CrossRef Google Scholar

[16] Li C, Yu X, Yu W, et al. Distributed event-triggered scheme for economic dispatch in smart grids. IEEE Trans Industr Inform, 2015: 1. Google Scholar

[17] Pinson P, O'Malley M. Foreword for the special section on wind and solar energy: uncovering and accommodating their impacts on electricity markets. IEEE Trans Power Syst, 2015, 30: 1557-1559 CrossRef Google Scholar

[18] Kar S, Hug G. Distributed robust economic dispatch in power systems: a consensus+ innovations approach. In: Proceedings of Power and Energy Society General Meeting, San Diego. 2012: 1-8. Google Scholar

[19] Wang C S. Analysis and Simulation Theory of Microgrid. Beijing: Science Press 2013: 30-80 [王成山. 微电网分析与仿真理论. 北京: 科学出版社, 2013: 30-80]. Google Scholar

[20] Gamez Urias M E, Sanchez E N, Ricalde L J. Electrical microgrid optimization via a new recurrent neural network. IEEE Syst J, 2015, 9: 945-953 CrossRef Google Scholar

[21] Boyd S, Vandenberghe L. Convex Optimization. New York: Cambridge University Press, 2004: 302-450. Google Scholar

[22] Yao Y R, Zhang L S. A penalty interior-point method for nonlinear programming. Chinese Ann Math, 2008, 29: 151-158 [姚奕荣, 张连生. 非线性规划的一个罚内点方法. 数学年刊:中文版, 2008, 29: 151-158]. Google Scholar

[23] Wan Y, Wen G, Cao J, et al. Distributed node-to-node consensus of multi-agent systems with stochastic sampling. Int J Robust and Nonlin, 2015, 26: 110-124 CrossRef Google Scholar

[24] Eddy F, Gooi H B, Chen S X. Multi-agent system for distributed management of microgrids. IEEE Trans Power Syst, 2015, 30: 24-34 CrossRef Google Scholar

[25] Lasalle J P. Stability theory and invariance principles. Dynam Syst, 1976, 1: 211-222. Google Scholar

[26] Goldhirsch I, Sulem P L, Orszag S A. Stability and lyapunov stability of dynamical systems: a differential approach and a numerical method. Physica D, 1987, 27: 311-337 CrossRef Google Scholar