logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 9 : 1211-1235(2016) https://doi.org/10.1360/N112016-00111

Developments and prospects of high-performance detection imaging and identification

More info
  • ReceivedApr 27, 2016
  • AcceptedAug 26, 2016
  • PublishedSep 18, 2016

Abstract


Funded by

国家自然科学基金(61372170)

国家自然科学基金(61490690)


References

[1] Varshney K R, Cetin M, Fisher J W, et a1. Sparse represent ation in structured dictionaries with application to synthetic aperture radar. IEEE Trans Signal Process, 2008, 56: 3548-3561 CrossRef Google Scholar

[2] Li W Q, Gao J, Cao X Y, et al. A kind of shared aperture radar absorbing material with absorber and phase cancellation characteristics. Acta Phys Sin, 2014, 63: 1-7 [李文强, 高军, 曹祥玉, 等. 一种具有吸波和相位相消特性的共享孔径雷达 吸波材料. 物理学报, 2014, 63: 1-7]. Google Scholar

[3] Xue Q S, Huang Y, Lin G Y. Optical system design of wide-angle and high-resolution spaceborne imaging spectrometer. Acta Opt Sin, 2011, 31: 0822001-3561 CrossRef Google Scholar

[4] Johnson M K, Cole F, Raj A, et al. Microgeometry capture using an elastomeric sensor. ACM Trans Graph, 2011, 30: 46. Google Scholar

[5] Qian L L. Research on computational imaging spectroscopy. Dissertation for Ph.D. Degree. Hefei: University of Science and Technology of China, 2013 [钱路路. 计算光谱成像技术研究. 博士学位论文. 合肥: 中国科技大学, 2013]. Google Scholar

[6] Sherwin C W, Ruina J P, Rawclisse R D. Some early developments in synthetic aperture radar systems. IRE Trans Military Eletron, 1962, 6: 111-115. Google Scholar

[7] Brown W M. Synthetic aperture radar. IEEE Trans Aero Electron Syst, 1967, 3: 217-229. Google Scholar

[8] Wiley C A. Synthetic aperture radar. IEEE Trans Aero Electron Syst, 1985, 21: 440-443. Google Scholar

[9] Moreira J, Schwabisch M, Fornaro G. X-SAR interferometry: first results. IEEE Trans Geosci Remote Sens, 1995, 33: 950-956 CrossRef Google Scholar

[10] Gabriel A K, Goldstein R M. Crossed orbit interferometry: theory and experimental results from SIR-B. Inter J Remote Sens, 1988, 9: 857-872 CrossRef Google Scholar

[11] Goldstein R M, Zebker H A, Werner C L. Satellite radar interferometry: two-dimension phase unwrapping. Radio Sci, 1988, 23: 713-720 CrossRef Google Scholar

[12] Hoen E W, Zebker H A. Penetration depths in inferred from interferometric volume decorrelation observed over the Greenland ice sheet. IEEE Trans Geosci Remote Sens, 2000, 38: 2571-2582 CrossRef Google Scholar

[13] Bamler R, Eineder M. ScanSAR processing using standard high precision SAR algorithms. IEEE Trans Geosci Remote Sens, 1996, 34: 212-218 CrossRef Google Scholar

[14] Prati C, Rocca F. Improving slant-range resolution with multiple SAR surveys. IEEE Trans Aero Electron Syst, 1993, 29: 135-143 CrossRef Google Scholar

[15] Curlander C, McDonough R N. Synthetic Aperture Radar: Systems and Signal Processing. New York: Wiley, 1991. Google Scholar

[16] Langenberg K J, Brandfa{\ss} M, Fellinger P, et al. Radar Target Imaging. Berlin: Springer-Verlag, 1994. 113-151. Google Scholar

[17] Huynen J R. Phenomenological theory of radar targets. Dissertation for Ph.D. Degree. Delft: Delft University of Technology, 1970. Google Scholar

[18] Boener W M. Need for developing multi-band single and multiple pass PolInSAR platforms in air and space. In: Proceedings of IEEE International Geoscience and Remote Sensing Symposium, Toulouse, 2003, 25: 422-424. Google Scholar

[19] Wu Y R. Concept of multidimensional space joint-observation SAR. J Radars, 2013, 2: 135-142 [吴一戎. 多维度合成孔径雷达成像概念. 雷达学报, 2013, 2: 135-142]. Google Scholar

[20] Cloude S R, Pottier E. An entropy based classification scheme for land applications of polarimetric SAR. IEEE Trans Geosci Remote Sens, 1997, 35: 68-78 CrossRef Google Scholar

[21] Cloude S R, Papathanassiou K P. Polarimetric SAR interferometry. IEEE Trans Geosci Remote Sens, 1998, 36: 1551-1565 CrossRef Google Scholar

[22] Cafforio C, Prati C, Rocca F. SAR data focusing using seismic migration techniques. IEEE Trans Aero Electron Syst, 1991, 27: 194-207 CrossRef Google Scholar

[23] Moser G, Serpico S B, Zerubia J. Dictionary-based stochastic expectation maximization for SAR amplitude probability density function estimation. IEEE Trans Geosci Remote Sens, 2006, 44: 188-200 CrossRef Google Scholar

[24] Moser G, Krylov V, Serpico S B, et al. High resolution SAR image classification by Markov random fields and finite mixtures. Proc SPIE, San Jose, 2010, 7533: 753308. Google Scholar

[25] Krylov V A, Moser G, Serpico S B, et al. Enhanced dictionary-based SAR amplitude distribution estimation and its validation with very high-resolution data. IEEE Geosci Remote Sens Lett, 2011, 8: 148-152 CrossRef Google Scholar

[26] Ding L F, Zhang P. Radar System. Xi'an: Publishing house of Xidian University [丁鹭飞, 张平. 雷达系统. 西安: 西安电子科技大学出版社]. Google Scholar

[27] Gao G, Liu L, Zhao L, et al. An adaptive and fast CFAR algorithm based on automatic censoring for target detection in high-resolution SAR images. IEEE Trans Geosci Remote Sens, 2009, 47: 1685-1697 CrossRef Google Scholar

[28] Hwang S I, Ouchi K. On a novel approach using MLCC and CFAR for the improvement of ship detection by synthetic aperture radar. IEEE Geosci Remote Sens Lett, 2010, 7: 391-395 CrossRef Google Scholar

[29] Brusch S, Lehner S, Fritz T, et al. Ship surveillance with TerraSAR-X. IEEE Trans Geosci Remote Sens, 2011, 49: 1092-1103 CrossRef Google Scholar

[30] Zhu C, Zhou H, Wang R, et al. A novel hierarchical method of ship detection from spaceborne optical image based on shape and texture features. IEEE Trans Geosci Remote Sens, 2010, 48: 3446-3456 CrossRef Google Scholar

[31] Gao G. An improved scheme for target discrimination in high-resolution SAR images. IEEE Trans Geosci Remote Sens, 2011, 49: 277-294 CrossRef Google Scholar

[32] Bin L, Wang H Y, Wang K Z, et al. A foreground/background separation framework for interpreting polarimetric SAR images. IEEE Geosci Remote Sens Lett, 2011, 8: 288-292 CrossRef Google Scholar

[33] Candes E J, Donoho D L. Curvelets--a Surprisingly Effective Nonadaptive Representation for Objects with Edges. Technical Report, Stanford University, 1999. Google Scholar

[34] Le Pennec E, Mallat S. Sparse geometric image representation with bandelets. IEEE Trans Image Process, 2005, 14: 423-438 CrossRef Google Scholar

[35] Itti L, Koch C. Computational modeling of visual attention. Nature Rev Neurosci, 2001, 2: 194-203 CrossRef Google Scholar

[36] Karklin Y, Lewicki M S. Emergence of complex cell properties by learning to generalize in natural scenes. Nature, 2009, 457: 83-86 CrossRef Google Scholar

[37] Lee H, Battle A, Raina R, et al. Efficient sparse coding algorithms. In: Proceedings of Conference on Neural Information Processing System, Vancouver, 2007. 801-808. Google Scholar

[38] Yang J, Yu K, Gong Y, et al. Linear spatial pyramid matching using sparse coding for image classication. In: Proceedings of Conference on Computer Vision and Pattern Recognition, Miami, 2009. 1794-1801. Google Scholar

[39] Bai X, Zhang H, Zhou J. VHR object detection based on structural feature extraction and query expansion. IEEE Trans Geosci Remote Sens, 2014, 52: 1-13 CrossRef Google Scholar

[40] Huang X, Zhang L. An SVM ensemble approach combining spectral, structural, and semantic features for the classification of highresolution remotely sensed imagery. IEEE Trans Geosci Remote Sens, 2013, 51: 257-272 CrossRef Google Scholar

[41] Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell, 2013, 35: 1798-1828 CrossRef Google Scholar

[42] Shao L, Wu D, Li X. Learning deep and wide: a spectral method for learning deep networks. IEEE Trans Neural Netw Learn Syst, 2014, 25: 2303-2308 CrossRef Google Scholar

[43] Bengio Y, Lamblin P, Popovici D, et al. Greedy layerwise training of deep networks. In: Proceedings of Conference on Neural Information Processing System, Vancouver, 2006. 153-160. Google Scholar

[44] Plebe A. A model of the response of visual area V2 to combinations of orientations. Netw Comput Neural Syst, 2012, 23: 105-122. Google Scholar

[45] Hinton G, Osindero S, Teh Y. A fast learning algorithm for deep belief nets. Neu Comput, 2006, 18: 1527-1554 CrossRef Google Scholar

[46] Yuan Y, Sun J, Mao S. PFA algorithm for airborne spotlight SAR imaging with nonideal motions. IEE Proc Radar Sonar Nav, 2002, 149: 174-182 CrossRef Google Scholar

[47] Zhu D Y, Zhu Z D. Range resampling in the polar format algorithm for spotlight SAR image formation using the chirp-Z transform. IEEE Trans Signal Process, 2007, 55: 1011-1023 CrossRef Google Scholar

[48] Cao F, Hong W, Wu Y R, et al. An unsupervised segmentation with an adaptive number of clusters using the SPAN/H/a/A space and the complex wishart clustering for fully polarimetric SAR data analysis. IEEE Trans Geosci Remote Sens, 2007, 45: 3454-3467 CrossRef Google Scholar

[49] Yang J, Yamaguchi Y, Yamada Y, et al. The characteristic polarization states and the equi-power curves. IEEE Trans Geosci Remote Sens, 2002, 40: 305-313 CrossRef Google Scholar

[50] Tao Z, Cherniakov M, Teng L. Generalized approach to resolution analysis in BSAR. IEEE Trans Aero Electron Syst, 2005, 41: 10-20. Google Scholar

[51] He X, Cherniakov M, Zeng T. Signal detectalility in SS-BSAR with GNSS non-cooperative transmitter. IEE Proc Radar Sonar Nav, 2005, 152: 124-132 CrossRef Google Scholar

[52] Ender J H G, Brenner A R. PAMIR -- a wideband phased SAR/MTI system. IEE Proc Radar Sonar Nav, 2003, 150: 165-172 CrossRef Google Scholar

[53] Li Z F, Bao Z, Li H, et al. Image auto-coregistration and InSAR interferogram estimation using joint subspace projection. IEEE Trans GRS, 2006, 44: 288-297. Google Scholar

[54] Cloude S R, Papathanassiou K P. Polarimetric SAR interferometry. IEEE Trans GRS, 1998, 36: 1551-1565. Google Scholar

[55] Li Z F, Bao Z, Wang H Y, et al. Performance improvement for constellation SAR using signal processing techniques. IEEE Trans Aero Electron Syst, 2006, 42: 436-452 CrossRef Google Scholar

[56] Wang T, Bao Z. Improving the image quality of spaceborne multiple-aperture SAR under minimization of sidelobe clutter and noise. IEEE Geosci Remote Sens Lett, 2006, 3: 297-301 CrossRef Google Scholar

[57] Zhang Z H, Xing M D, Ding J S, et al. Focusing parallel bistatic SAR data using the analytic transfer function in the wavenumber domain. IEEE Trans Geosci Remote Sens, 2007, 45: 3633-3645 CrossRef Google Scholar

[58] Wang T, Bao Z, Zhang Z H, et al. Improving coherence of complex image pairs obtained by along-track bistatic SARs using range-azimuth prefiltering. IEEE Trans Geosci Remote Sens, 2008, 46: 3-13 CrossRef Google Scholar

[59] Zernike F. How I discovered phase contrast. Science, 1955, 121: 345-349 CrossRef Google Scholar

[60] Yamaguchi I, Zhang T. Phase-shifting digital holography. Opt Lett, 1997, 22: 1268-1270 CrossRef Google Scholar

[61] Bifano T. Adaptive imaging: MEMS deformable mirrors. Nature Photon, 2011, 5: 21-23 CrossRef Google Scholar

[62] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Inf Theory, 2004, 52: 489-509 CrossRef Google Scholar

[63] Hell S W, Wichmann J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett, 1994, 19: 780-782 CrossRef Google Scholar

[64] Hess S T, Girirajan T P K, Mason M D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys J, 2006, 91: 4258-4272 CrossRef Google Scholar

[65] Rust M J, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods, 2006, 3: 793-796 CrossRef Google Scholar

[66] Gustafsson M G L. Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proc Natl Acad Sci United States of America, 2005, 102: 13081-13086 CrossRef Google Scholar

[67] Brady D J, Gehm M E, Stack R A, et al. Multiscale gigapixel photography. Nature, 2012, 486: 386-389 CrossRef Google Scholar

[68] Zheng G, Horstmeyer R, Yang C. Wide-field, high-resolution Fourier ptychographic microscopy. Nature Photon, 2013, 7: 739-745 CrossRef Google Scholar

[69] Velten A, Wu D, Jarabo A, et al. Femto-photography: capturing and visualizing the propagation of light. ACM Trans Graph, 2013, 32: 44. Google Scholar

[70] Goda K, Tsia K K, Jalali B. Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 2009, 458: 1145-1149 CrossRef Google Scholar

[71] Nakagawa K, Iwasaki A, Oishi Y, et al. Sequentially timed all-optical mapping photography (STAMP). Nature Photon, 2014, 8: 695-700 CrossRef Google Scholar

[72] Velten A, Willwacher T, Gupta O, et al. Recovering three-dimensional shape around a corner using ultrafast time-of flight imaging. Nat Commun, 2012, 3: 745-700 CrossRef Google Scholar

[73] Choi W, Fang-Yen C, Badizadegan K, et al. Tomographic phase microscopy. Nat Methods, 2007, 4: 717-719 CrossRef Google Scholar

[74] Waller L, Situ G, Fleischer J W. Phase-space measurement and coherence synthesis of optical beams. Nature Photon, 2012, 6: 474-479 CrossRef Google Scholar

[75] Levoy M, Ng R, Adams A, et al. Light field microscopy. ACM Trans Graph, 2006, 25: 924-934 CrossRef Google Scholar

[76] Prevedel R, Yoon Y G, Hoffmann M, et al. Simultaneous whole-animal 3D-imaging of neuronal activity using light field microscopy. Nat Methods, 2014, 11: 727-730 CrossRef Google Scholar

[77] Bao J, Bawendi M G. A colloidal quantum dot spectrometer. Nature, 2015, 523: 67-70 CrossRef Google Scholar