SCIENTIA SINICA Informationis, Volume 47 , Issue 2 : 247-259(2017) https://doi.org/10.1360/N112016-00105

Improved matrix CFAR detector based on K-L divergence and divergence mean}{Improved matrix CFAR detector based on K-L divergence and divergence mean

More info
  • ReceivedJul 3, 2016
  • AcceptedSep 30, 2016
  • PublishedDec 16, 2016


Funded by




[1] He Y, Jian T, Su F, et al. CFAR assessment of covariance matrix estimators for non-Gaussian clutter. Sci Sin Inform, 2011, 41: 90-99 [何友, 简涛, 苏峰, 等. 非高斯杂波相关矩阵估计方法及CFAR特性分析. 中国科学: 信息科学, 2011, 41: 90-99]. Google Scholar

[2] Guan J, Huang Y, He Y. A CFAR detector for MIMO array based on adaptive pulse compression-Capon filter. Sci Sin Inform, 2011, 41: 1268-1282 [关键, 黄勇, 何友. 基于自适应脉冲压缩-Capon滤波器的MIMO陈列雷达CFAR检测器. 中国科学: 信息科学, 2011, 41: 1268-1282]. Google Scholar

[3] Barbaresco F, Ruiz M. Radar detection for non-stationary Doppler signal in one burst based on information geometry: distance between paths on covariance matrices manifold. In: Proceedings of European Radar Conference, Paris, 2015. 41-44. Google Scholar

[4] Marc A, Barbaresco F. Riemannian medians and means with applications to radar signal processing. IEEE J Sel Top Signal Proc, 2013, 7: 595-604 CrossRef Google Scholar

[5] Bao F, Liu J S, Zhu R, et al. Control method for aircraft wake vortex based on Rayleigh-Ludwig instability. J Beijing Univ Aeron Astron, 2015, 41: 1381-1387 [鲍峰, 刘锦生, 朱睿, 等. 基于涡系相交不稳定性的飞机尾流控制方法. 北京航空航天大学学报, 2015, 41: 1381-1387]. Google Scholar

[6] Amari S. Information geometry of positive measures and positive-definite matrices: decomposable dually flat structure. Entropy, 2014, 16: 2131-2145 CrossRef Google Scholar

[7] Zhao X G, Wang S Y. Information geometry method to radar target detection. Signal Proc, 2015, 31: 631-637 [赵兴刚, 王首勇. 雷达目标检测的信息几何方法. 信号处理, 2015, 31: 631-637]. Google Scholar

[8] Zhao X G, Wang S Y. Radar target distance detection method based on SIRP clutter. J Huazhong Univ Sci Technol, 2015, 43: 79-83 [赵兴刚, 王首勇. 基于SIRP杂波的雷达目标距离检测方法. 华中科技大学学报, 2015, 43: 79-83]. Google Scholar

[9] Amari S, Nagaoka H. Methods of Information Geometry. New York: Oxford University Press, 2000. Google Scholar

[10] Sun H F, Peng L Y, Zhang Z N. Information geometry and its applications. Adv Math, 2011, 40: 257-269 [孙华飞, 彭林玉, 张真宁. 信息几何及其应用. 数学进展, 2011, 40: 257-269]. Google Scholar

[11] Amari S. Information geometry on hierarchy of probability distributions. IEEE Trans Inform Theory, 2001, 47: 1701-1711 CrossRef Google Scholar

[12] Zeineb C, Maher M. Means of Hermitian positive-definite matrices based on the log-determinant $\alpha $-divergence function. Linear Algebra Appl, 2012, 436: 1872-1889 CrossRef Google Scholar

[13] Yang Z. Principal whitened gradient for information geometry. Neural Netw, 2008, 21: 232-240 CrossRef Google Scholar

[14] Li X, Cheng Y Q, Wang H Q, et al. Information Geometry Methods to Radar Signal Processing. Beijing: Science Press, 2014 [黎湘, 程永强, 王宏强, 等. 雷达信号处理的信息几何方法. 北京: 科学出版社, 2014]. Google Scholar

[15] Moakher M. A differential geometric approach to the geometric mean of symmetric positive-definite matrices. SIAM J Matrix Anal A, 2005, 26: 735-747 CrossRef Google Scholar

[16] Lenglet M, Rousson R. Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing. J Math Imaging Vis, 2006, 25: 423-444 CrossRef Google Scholar