References
[1]
He Y, Jian T, Su F, et al. CFAR assessment of covariance matrix estimators for non-Gaussian clutter. Sci Sin Inform, 2011, 41: 90-99 [何友, 简涛, 苏峰, 等. 非高斯杂波相关矩阵估计方法及CFAR特性分析. 中国科学: 信息科学, 2011, 41: 90-99].
Google Scholar
http://scholar.google.com/scholar_lookup?title=He Y, Jian T, Su F, et al. CFAR assessment of covariance matrix estimators for non-Gaussian clutter. Sci Sin Inform, 2011, 41: 90-99 [何友, 简涛, 苏峰, 等. 非高斯杂波相关矩阵估计方法及CFAR特性分析. 中国科学: 信息科学, 2011, 41: 90-99]&
[2]
Guan J, Huang Y, He Y. A CFAR detector for MIMO array based on adaptive pulse compression-Capon filter. Sci Sin Inform, 2011, 41: 1268-1282 [关键, 黄勇, 何友. 基于自适应脉冲压缩-Capon滤波器的MIMO陈列雷达CFAR检测器. 中国科学: 信息科学, 2011, 41: 1268-1282].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Guan J, Huang Y, He Y. A CFAR detector for MIMO array based on adaptive pulse compression-Capon filter. Sci Sin Inform, 2011, 41: 1268-1282 [关键, 黄勇, 何友. 基于自适应脉冲压缩-Capon滤波器的MIMO陈列雷达CFAR检测器. 中国科学: 信息科学, 2011, 41: 1268-1282]&
[3]
Barbaresco F, Ruiz M. Radar detection for non-stationary Doppler signal in one burst based on information geometry: distance between paths on covariance matrices manifold. In: Proceedings of European Radar Conference, Paris, 2015. 41-44.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Barbaresco F, Ruiz M. Radar detection for non-stationary Doppler signal in one burst based on information geometry: distance between paths on covariance matrices manifold. In: Proceedings of European Radar Conference, Paris, 2015. 41-44&
[4]
Marc
A,
Barbaresco
F.
Riemannian medians and means with applications to radar signal processing.
IEEE J Sel Top Signal Proc,
2013, 7: 595-604
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Riemannian medians and means with applications to radar signal processing&author=Marc A&author=Barbaresco F&publication_year=2013&journal=IEEE J Sel Top Signal Proc&volume=7&pages=595-604
[5]
Bao F, Liu J S, Zhu R, et al. Control method for aircraft wake vortex based on Rayleigh-Ludwig instability. J Beijing Univ Aeron Astron, 2015, 41: 1381-1387 [鲍峰, 刘锦生, 朱睿, 等. 基于涡系相交不稳定性的飞机尾流控制方法. 北京航空航天大学学报, 2015, 41: 1381-1387].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bao F, Liu J S, Zhu R, et al. Control method for aircraft wake vortex based on Rayleigh-Ludwig instability. J Beijing Univ Aeron Astron, 2015, 41: 1381-1387 [鲍峰, 刘锦生, 朱睿, 等. 基于涡系相交不稳定性的飞机尾流控制方法. 北京航空航天大学学报, 2015, 41: 1381-1387]&
[6]
Amari
S.
Information geometry of positive measures and positive-definite matrices: decomposable dually flat structure.
Entropy,
2014, 16: 2131-2145
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Information geometry of positive measures and positive-definite matrices: decomposable dually flat structure&author=Amari S&publication_year=2014&journal=Entropy&volume=16&pages=2131-2145
[7]
Zhao X G, Wang S Y. Information geometry method to radar target detection. Signal Proc, 2015, 31: 631-637 [赵兴刚, 王首勇. 雷达目标检测的信息几何方法. 信号处理, 2015, 31: 631-637].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhao X G, Wang S Y. Information geometry method to radar target detection. Signal Proc, 2015, 31: 631-637 [赵兴刚, 王首勇. 雷达目标检测的信息几何方法. 信号处理, 2015, 31: 631-637]&
[8]
Zhao X G, Wang S Y. Radar target distance detection method based on SIRP clutter. J Huazhong Univ Sci Technol, 2015, 43: 79-83 [赵兴刚, 王首勇. 基于SIRP杂波的雷达目标距离检测方法. 华中科技大学学报, 2015, 43: 79-83].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhao X G, Wang S Y. Radar target distance detection method based on SIRP clutter. J Huazhong Univ Sci Technol, 2015, 43: 79-83 [赵兴刚, 王首勇. 基于SIRP杂波的雷达目标距离检测方法. 华中科技大学学报, 2015, 43: 79-83]&
[9]
Amari S, Nagaoka H. Methods of Information Geometry. New York: Oxford University Press, 2000.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Amari S, Nagaoka H. Methods of Information Geometry. New York: Oxford University Press, 2000&
[10]
Sun H F, Peng L Y, Zhang Z N. Information geometry and its applications. Adv Math, 2011, 40: 257-269 [孙华飞, 彭林玉, 张真宁. 信息几何及其应用. 数学进展, 2011, 40: 257-269].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sun H F, Peng L Y, Zhang Z N. Information geometry and its applications. Adv Math, 2011, 40: 257-269 [孙华飞, 彭林玉, 张真宁. 信息几何及其应用. 数学进展, 2011, 40: 257-269]&
[11]
Amari
S.
Information geometry on hierarchy of probability distributions.
IEEE Trans Inform Theory,
2001, 47: 1701-1711
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Information geometry on hierarchy of probability distributions&author=Amari S&publication_year=2001&journal=IEEE Trans Inform Theory&volume=47&pages=1701-1711
[12]
Zeineb
C,
Maher
M.
Means of Hermitian positive-definite matrices based on the log-determinant $\alpha $-divergence function.
Linear Algebra Appl,
2012, 436: 1872-1889
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Means of Hermitian positive-definite matrices based on the log-determinant $\alpha $-divergence function&author=Zeineb C&author=Maher M&publication_year=2012&journal=Linear Algebra Appl&volume=436&pages=1872-1889
[13]
Yang
Z.
Principal whitened gradient for information geometry.
Neural Netw,
2008, 21: 232-240
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Principal whitened gradient for information geometry&author=Yang Z&publication_year=2008&journal=Neural Netw&volume=21&pages=232-240
[14]
Li X, Cheng Y Q, Wang H Q, et al. Information Geometry Methods to Radar Signal Processing. Beijing: Science Press, 2014 [黎湘, 程永强, 王宏强, 等. 雷达信号处理的信息几何方法. 北京: 科学出版社, 2014].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li X, Cheng Y Q, Wang H Q, et al. Information Geometry Methods to Radar Signal Processing. Beijing: Science Press, 2014 [黎湘, 程永强, 王宏强, 等. 雷达信号处理的信息几何方法. 北京: 科学出版社, 2014]&
[15]
Moakher
M.
A differential geometric approach to the geometric mean of symmetric positive-definite matrices.
SIAM J Matrix Anal A,
2005, 26: 735-747
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A differential geometric approach to the geometric mean of symmetric positive-definite matrices&author=Moakher M&publication_year=2005&journal=SIAM J Matrix Anal A&volume=26&pages=735-747
[16]
Lenglet
M,
Rousson
R.
Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing.
J Math Imaging Vis,
2006, 25: 423-444
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Statistics on the manifold of multivariate normal distributions: theory and application to diffusion tensor MRI processing&author=Lenglet M&author=Rousson R&publication_year=2006&journal=J Math Imaging Vis&volume=25&pages=423-444