logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 10 : 1465-1488(2016) https://doi.org/10.1360/N112016-00098

The development and application of the moment method in the gas kinetic theory

More info
  • ReceivedMar 30, 2016
  • AcceptedAug 15, 2016
  • PublishedOct 25, 2016

Abstract


Funded by

国家重点基础研究发展计划(973计划)

(2011CB309704)


References

[1] Diperna R J, Lions P L. On the cauchy problem for boltzmann equations: global existence and weak stability. newblock Ann Math, 1989, 130: 321-366 CrossRef Google Scholar

[2] Ukaij S. On the existence of global solutions of mixed problem for non-linear boltzmann equation. newblock Proc Japan Academy, 1974, 50: 179-184 CrossRef Google Scholar

[3] Arlottia L, Bellomob N, Lachowiczc M. Kinetic equations modelling population dynamics. newblock Transport Theory Stat Phys, 2000, 29: 125-139 CrossRef Google Scholar

[4] Barnes J E, Hernquist L. Transformations of galaxies. {II}. gasdynamics in merging disk galaxies. {Astrophys J}, 1996, 471: 115-142. Google Scholar

[5] Waldeer K T. The direct simulation {M}onte {C}arlo method applied to a boltzmann-like vehicular traffic flow model. newblock Comput Phys Commun, 2003, 156: 1-12 CrossRef Google Scholar

[6] Grad H. On the kinetic theory of rarefied gases. newblock Commun Pure Appl Math, 1949, 2: 331-407 CrossRef Google Scholar

[7] Grad H. Principles of the kinetic theory of gases. {Handbuch der Physik}, 1958, 12: 205-294. Google Scholar

[8] Grad H. The profile of a steady plane shock wave. newblock Commun Pure Appl Math, 1952, 5: 257-300 CrossRef Google Scholar

[9] Anderson J L, Spiegel E A. The moment method in relativistic radiative transfer. newblock Astrophys J, 1972, 171: 127-138 CrossRef Google Scholar

[10] Jenkins J T, Richman M W. Grad's 13-moment system for a dense gas of inelastic spheres. In: The Breadth and Depth of Continuum Mechanics. Berlin: Springer, 1986. 647-669. Google Scholar

[11] Krany{\v{s}} M. Non truncated relativistic {C}hernikov-{G}rad 13-moment equations as an approach to nonstationary thermodynamics. newblock Phys Lett A, 1970, 33: 77-78 CrossRef Google Scholar

[12] McCormack F J. Kinetic equations for polyatomic gases: the 17-moment approximation. newblock Phys Fluids, 1968, 11: 2533-2543 CrossRef Google Scholar

[13] Truesdell C, Muncaster R G. {Fundamentals of {M}axwell's Kinetic Theory of a Simple Monatomic Gas: Treated as a Branch of Rational Mechanics}. Manhattan: Academic Press, 1980. Google Scholar

[14] Zhdanov V M. The kinetic theory of a polyatomic gas. {Zh Eksp Teor Fiz}, 1968, 53: 2099-2108. Google Scholar

[15] Ai D K. Cylindrical Couette flow in a rarefied gas according to Grad's equations. Hypersonic Research Project No. 56, California Insitute of Technology. 1960. Google Scholar

[16] Meador W E. A Critical Analysis of the {G}rad Approximation for Closing out the Magnetohydrodynamic Equations for Plasmas. NASA Technical Report R-325, National Aeronautic and Space Administraion, 1969. Google Scholar

[17] Moses G A, Duderstadta J J. Improved treatment of electron thermal conduction in plasma hydrodynamics calculations. newblock Phys Fluids, 1977, 20: 762-770 CrossRef Google Scholar

[18] M{ü}ller I, Ruggeri T. {Extended Thermodynamics}. In: {Springer Tracts in Natural Philosophy}. New York: Springer-Verlag, 1993. 37. Google Scholar

[19] Cai Z, Fan Y, Li R. On hyperbolicity of 13-moment system. newblock Kinetic Related Models, 2014, 7: 415-432 CrossRef Google Scholar

[20] Eu B C. A modified moment method and irreversible thermodynamics. newblock J Chem Phys, 1980, 73: 2958-2969 CrossRef Google Scholar

[21] Eu B C. The modified moment method, irreversible thermodynamics, and the nonlinear viscosity of a dense fluid. newblock J Chem Phys, 1981, 74: 6362-6372 CrossRef Google Scholar

[22] Dreyer W. Maximisation of the entropy in non-equilibrium. {J Phys A General Phys}, 1987, 20: 6505-6517. Google Scholar

[23] Levermore C D. Moment closure hierarchies for kinetic theories. newblock J Stat Phys, 1996, 83: 1021-1065 CrossRef Google Scholar

[24] Alldredge G W, Hauck C D, Tits A L. High-order entropy-based closures for linear transport in slab geometry ii: a computational study of the optimization problem. newblock SIAM J Sci Comput, 2012, 34: B361-B391 CrossRef Google Scholar

[25] Alldredge G W, Schneider F. A realizability-preserving discontinuous {G}alerkin scheme for entropy-based moment closures for linear kinetic equations in one space dimension. newblock J Comput Phys, 2015, 295: 665-684 CrossRef Google Scholar

[26] Schaerer R, Bansal P, Torrilhon M. Entropy-based moment closures for gas dynamics. In: Proceedings of the 2nd European Conference on Non-equilibrium Gas Flows, Eindhoven, 2015. 15-63. Google Scholar

[27] Tallec P L, Perlat J P. Numerical Analysis of {L}evermore's Moment System. Rapport de recherche 3124, INRIA Rocquencourt. 1997. Google Scholar

[28] {Abdel-Malik} M R A, {van Brummelen} E H. Moment closure approximations of the {B}oltzmann equation based on {$\phi$}-divergences. newblock J Stat Phys, 2016, 164: 77-104 CrossRef Google Scholar

[29] Alldredge G W, Li R, Li W. Approximating the {$M_2$} method by the extended quadrature method of moments for radiative transfer in slab geometry. newblock Kinetic Related Models, 2016, 9: 237-249 CrossRef Google Scholar

[30] McDonald J, Torrilhon M. Affordable robust moment closures for {CFD} based on the maximum-entropy hierarchy. newblock J Comput Phys, 2013, 251: 500-523 CrossRef Google Scholar

[31] Pichard T, Alldredge G W, Brull S, et al. An approximation of the $m_2$ closure: application to radiotherapy dose simulation. http://stephane.brull.pagesperso-orange.fr/M2.pdf. Google Scholar

[32] Schaerer R P, Torrilhon M. On singular closures for the 5-moment system in kinetic gas theory. newblock Commun Comput Phys, 2015, 17: 371-400 CrossRef Google Scholar

[33] Struchtrup H, Torrilhon M. Regularization of {G}rad's 13 moment equations: derivation and linear analysis. newblock Phys Fluids, 2003, 15: 2668-2680 CrossRef Google Scholar

[34] Struchtrup H. {Macroscopic Transport Equations for Rarefied Gas Flows}. Berlin: Springer, 2005. Google Scholar

[35] Struchtrup H. Stable transport equations for rarefied gases at high orders in the {K}nudsen number. newblock Phys Fluids, 2004, 16: 3921-3934 CrossRef Google Scholar

[36] Gupta V K. {Mathematical modeling of rarefied gas-mixtures}. Dissertation for Ph.D. Degree. Aachen: RWTH Aachen University, 2015. Google Scholar

[37] Rahimi B, Struchtrup H. Capturing non-equilibrium phenomena in rarefied polyatomic gases: a high-order macroscopic model. newblock Phys Fluids, 2014, 26: 052001-3934 CrossRef Google Scholar

[38] Struchtrup H. Derivation of 13 moment equations for rarefied gas flow to second order accuracy for arbitrary interaction potentials. newblock Multiscale Model Simul, 2005, 3: 221-243 CrossRef Google Scholar

[39] Struchtrup H, Torrilhon M. Regularized 13 moment equations for hard sphere molecules: linear bulk equations. newblock Phys Fluids, 2013, 25: 052001-243 CrossRef Google Scholar

[40] Gu X J, Emerson D R. A high-order moment approach for capturing non-equilibrium phenomena in the transition regime. newblock J Fluid Mech, 2009, 636: 177-216 CrossRef Google Scholar

[41] McDonald J G, Groth C P T. Towards realizable hyperbolic moment closures for viscous heat-conducting gas flows based on a maximum-entropy distribution. newblock Continuum Mech Thermodyn, 2013, 25: 573-603 CrossRef Google Scholar

[42] Mizzi S, Gu X J, Emerson D R, et al. Computational framework for the regularized 20-moment equations for non-equilibrium gas flows. newblock Int J Num Meth Fluids, 2008, 56: 1433-1439 CrossRef Google Scholar

[43] Junk M. Domain of definition of {L}evermore's five-moment system. newblock J Stat Phys, 1998, 93: 1143-1167 CrossRef Google Scholar

[44] Rana A, Torrilhon M, Struchtrup H. A robust numerical method for the {R}13 equations of rarefied gas dynamics: application to lid driven cavity. newblock J Comput Phys, 2013, 236: 169-186 CrossRef Google Scholar

[45] Torrilhon M, Struchtrup H. Boundary conditions for regularized 13-moment-equations for micro-channel-flows. newblock J Comput Phys, 2008, 227: 1982-2011 CrossRef Google Scholar

[46] Au J D, Torrilhon M, Weiss W. The shock tube study in extended thermodynamics. newblock Phys Fluids, 2001, 13: 2423-2432 CrossRef Google Scholar

[47] Boillat G, Ruggeri T. Moment equations in the kinetic theory of gases and wave velocities. newblock Continuum Mech Thermodyn, 1997, 9: 205-212 CrossRef Google Scholar

[48] M{ü}ller I, Reitebuch D, Weiss W. Extended thermodynamics - consistent in order of magnitude. {Continuum Mech Thermodyn}, 2002, 15: 113-146. Google Scholar

[49] Ruggeri T. Breakdown of shock-wave-structure solutions. {Phys Rev E}, 1993, 47: 4135-4140. Google Scholar

[50] Cai Z, Li R. Numerical regularized moment method of arbitrary order for {B}oltzmann-{BGK} equation. newblock SIAM J Sci Comput, 2010, 32: 2875-2907 CrossRef Google Scholar

[51] Cai Z, Fan Y, Li R. Globally hyperbolic regularization of {G}rad's moment system. newblock Commun Pure Appl Math, 2014, 67: 464-518 CrossRef Google Scholar

[52] Cai Z, Li R, Wang Y. Numerical regularized moment method for high Mach number flow. newblock Commun Comput Phys, 2012, 11: 1415-1438 CrossRef Google Scholar

[53] Brown S L. {Approximate Riemann solvers for moment models of dilute gases}. Dissertation for Ph.D. Degree. Ann Arbor: The University of Michigan, 1996. Google Scholar

[54] Holway L H. Kinetic Theory of Shock Structure Using an Ellipsoidal Distribution Function. {Manhattan: Academic Press}, 1966. 1: 193-215. Google Scholar

[55] Bhatnagar P L, Gross E P, Krook M. A model for collision processes in gases. {I}. small amplitude processes in charged and neutral one-component systems. {Phys Rev}, 1954, 94: 511-525. Google Scholar

[56] Shakhov E M. Generalization of the {K}rook kinetic relaxation equation. {Fluid Dyn}, 1968, 3: 95-96. Google Scholar

[57] Andries P, Bourgat J F, Tallec P L, et al. Numerical comparison between the {Boltzmann} and {ES}-{BGK} models for rarefied gases. newblock Comput Methods Appl Mech Engrg, 2002, 191: 3369-3390 CrossRef Google Scholar

[58] Cercignani C. {The Boltzmann Equation}. Berlin: Springer, 1988. Google Scholar

[59] Cai Z, Li R, Qiao Z. {NR$xx$} simulation of microflows with {S}hakhov model. newblock SIAM J Sci Comput, 2012, 34: A339-A369 CrossRef Google Scholar

[60] Cai Z, Li R, Qiao Z. Globally hyperbolic regularized moment method with applications to microflow simulation. newblock Comput Fluids, 2013, 81: 95-109 CrossRef Google Scholar

[61] Cai Z, Torrilhon M. Approximation of the linearized {B}oltzmann collision operator for hard-sphere and inverse-power-law models. newblock J Comput Phys, 2015, 295: 617-643 CrossRef Google Scholar

[62] Torrilhon M. Special issues on moment methods in kinetic gas theory. newblock Continuum Mech Thermodyn, 2009, 21: 341-343 CrossRef Google Scholar

[63] Cai Z, Fan Y, Li R. A framework on moment model reduction for kinetic equation. newblock SIAM J Appl Math, 2015, 75: 2001-2023 CrossRef Google Scholar

[64] Fan Y, Koellermeier J, Li J, et al. Model reduction of kinetic equations by operator projection. newblock J Stat Phys, 2016, 162: 457-486 CrossRef Google Scholar

[65] Maxwell J C. On stresses in rarefied gases arising from inequalities of temperature. newblock Proc Royal Soc London, 1878, 27: 304-308 CrossRef Google Scholar

[66] Cai Z, Fan Y, Li R, et al. Dimension-reduced hyperbolic moment method for the {B}oltzmann equation with {BGK}-type collision. newblock Commun Comput Phys, 2014, 15: 1368-1406 CrossRef Google Scholar

[67] Bird G A. {Molecular Gas Dynamics and the Direct Simulation of Gas Flows}. Oxford: Clarendon Press, 1994. Google Scholar

[68] M{ü}ller I, Ruggeri T. Rational Extended Thermodynamics. 2nd ed. In: {Springer Tracts in Natural Philosophy}. New York: Springer-Verlag, 1998. 37. Google Scholar

[69] Cai Z, Fan Y, Li R. Globally hyperbolic regularization of {G}rad's moment system in one dimensional space. newblock Commun Math Sci, 2013, 11: 547-571 CrossRef Google Scholar

[70] Cai Z N, Fan Y W, Li R. On hyperbolicity of 13-moment system. newblock Kinetic Related Models, 2014, 7: 415-432 CrossRef Google Scholar

[71] Torrilhon M. Characteristic waves and dissipation in the 13-moment-case. newblock Continuum Mech Thermodyn, 2000, 12: 289-301 CrossRef Google Scholar

[72] Torrilhon M, Struchtrup H. Regularized 13-moment equations: shock structure calculations and comparison to {B}urnett models. newblock J Fluid Mech, 2004, 513: 171-198 CrossRef Google Scholar

[73] Torrilhon M. Regularization of Grad's 13-Moment-Equations in Kinetic Gas Theory. Technical report, DTIC Document. 2011. Google Scholar

[74] Gorbin A N, Karlin I V. Thermodynamic parameterization. newblock Phys A Stat Mech Appl, 1992, 190: 393-404 CrossRef Google Scholar

[75] Gorbin A N, Karlin I V. Method of invariant manifolds and the regularization of acoustic spectra. newblock Trans Theory Stat Phys, 1994, 23: 559-632 CrossRef Google Scholar

[76] Torrilhon M. Hyperbolic moment equations in kinetic gas theory based on multi-variate {P}earson-{IV}-distributions. {Commun Comput Phys}, 2010, 7: 639-673. Google Scholar

[77] Cai Z N, Fan Y W, Li R. From discrete velocity model to moment method. J Comput Math, in press [蔡振宁, 樊玉伟, 李若. 从离散速度模型到矩方法. {计算数学}, 待出版]. Google Scholar

[78] Broadwell J E. Study of rarefied shear flow by the discrete velocity method. newblock J Fluid Mech, 1964, 19: 401-414 CrossRef Google Scholar

[79] Koellermeier J, Schaerer R, Torrilhon M. A framework for hyperbolic approximation of kinetic equations using quadrature-based projection methods. newblock Kinet Relat Mod, 2014, 7: 531-549 CrossRef Google Scholar

[80] Koellermeier J, Torrilhon M. Hyperbolic moment equations using quadrature-based projection methods. In: Proceedings of the 29th International Symposium on Rarefied Gas Dynamics, Xi'an, 2014. 1628: 626-633. Google Scholar

[81] Brunner T A, Holloway J P. One-dimensional Riemann solvers and the maximum entropy closure. newblock J Quant Spectrosc Radiative Trans, 2001, 69: 543-566 CrossRef Google Scholar

[82] Hauck C D. High-order entropy-based closures for linear transport in slab geometry. newblock Commun Math Sci, 2011, 9: 187-205 CrossRef Google Scholar

[83] Fan Y W, Li R. Globally hyperbolic moment system by generalized Hermite expansion. Sci Sin Math, 2015, 45: 1635-1676 [樊玉伟, 李若. 基于广义 Hermite 展开的全局双曲矩方程组. 中国科学: 数学, 2015, 45: 1635-1676]. Google Scholar

[84] Struchtrup H. Kinetic schemes and boundary conditions for moment equations. newblock Z Angew Math Phys, 2000, 51: 346-365 CrossRef Google Scholar

[85] Thatcher T, Zheng Y, Struchtrup H. Boundary conditions for {G}rad's 13 moment equations. newblock Progress Comput Fluid Dyn, 2008, 8: 69-83 CrossRef Google Scholar

[86] Cai Z, Torrilhon M. Numerical simulation of microflows using moment methods with linearized collision operator. submitted. Google Scholar

[87] Torrilhon M, Au J, Reitebuch D, et al. The Riemann-problem in extended thermodynamics. In: Hyperbolic Problems: Theory, Numerics, Applications. Basel: Birkh{ä}user, 2001. 140: 79-88. Google Scholar

[88] Torrilhon M. Two dimensional bulk microflow simulations based on regularized {G}rad's 13-moment equations. newblock SIAM Multiscale Model Simul, 2006, 5: 695-728 CrossRef Google Scholar

[89] Cai Z, Li R, Wang Y. An efficient {NRxx} method for {B}oltzmann-{BGK} equation. newblock J Sci Comput, 2012, 50: 103-119 CrossRef Google Scholar

[90] Cai Z, Li R. The {NR$xx$} method for polyatomic gases. newblock J Comput Phys, 2014, 267: 63-91 CrossRef Google Scholar

[91] Rhebergen S, Bokhove O, van der Vegt J J W. Discontinuous {G}alerkin finite element methods for hyperbolic nonconservative partial differential equations. newblock J Comput Phys, 2008, 227: 1887-1922 CrossRef Google Scholar

[92] Dal Maso G, LeFloch P G, Murat F. Definition and weak stability of nonconservative products. {J Math Pures Appl}, 1995, 74: 483-548. Google Scholar

[93] Aoki K, Degond P, Mieussens L. Numerical simulations of rarefied gases in curved channels: thermal creep, circulating flow, and pumping effect. newblock Commun Comput Phys, 2009, 6: 919-954 CrossRef Google Scholar

[94] Weiss W. Continuous shock structure in extended thermodynamics. newblock Phys Rev E, 1995, 52: R5760-R5763 CrossRef Google Scholar

[95] Gu X J, Emerson D R. A computational strategy for the regularized 13 moment equations with enhanced wall-boundary equations. {J Comput Phys}, 2007, 255: 263-283. Google Scholar

[96] Hu Z C, Li R. A nonlinear multigrid steady-state solver for 1D microflow. newblock Comput Fluids, 2014, 103: 193-203 CrossRef Google Scholar

[97] Hu Z C, Li R, Qiao Z. Extended hydrodynamic models and multigrid solver of a silicon diode simulation. newblock Commun Comput Phys, 2016, 20: 551-582 CrossRef Google Scholar

[98] Hu Z C, Li R, Qiao Z. Acceleration for microflow simulations of high-order moment models by using lower-order model correction. arXiv:1608.08790. Google Scholar

[99] R{\o}nquist E M, Patera A T. Spectral element multigrid. {I}. formulation and numerical results. {J Sci Comput}, 1987, 2: 389-406. Google Scholar

[100] Cai Z N, Fan Y W, Li R, et al. Quantum hydrodynamic model by moment closure of wigner equation. newblock J Math Phys, 2012, 53: 103503-406 CrossRef Google Scholar

[101] Hu Z C, Li R, Lu T, et al. Simulation of an {$n^{+}$-$n$-$n^{+}$} diode by using globally-hyperbolically-closed high-order moment models. newblock J Sci Comput, 2014, 59: 761-774 CrossRef Google Scholar

[102] Li R, Lu T, Wang Y, et al. Numerical validation for high order hyperbolic moment system of wigner equation. newblock Commun Comput Phys, 2014, 15: 569-595 CrossRef Google Scholar

[103] Li R, Lu T, Yao W. Discrete kernel preserving model for 1d electron-optical phonon scattering. newblock J Sci Comput, 2015, 62: 317-335 CrossRef Google Scholar

[104] Yao W Q, Li R, Lu T, et al. Globally hyperbolic moment method for BTE including phonon scattering. In: International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), Glasgow, 2013. 300-303. Google Scholar

[105] Cai Z, Li R, Wang Y. Solving {V}lasov equation using {NRxx} method. newblock SIAM J Sci Comput, 2013, 35: A2807-A2831 CrossRef Google Scholar

[106] Di Y N, Kou Z Z, Li R. High order moment closure with global hyperbolicity of {V}lasov-{M}axwell equations. newblock Front Math China, 2015, 10: 1087-1100 CrossRef Google Scholar

[107] Cai Z N, Fan Y W, Li R, et al. Quantum hydrodynamic model of density functional theory. newblock J Math Chem, 2013, 51: 1747-1771 CrossRef Google Scholar

[108] Cai Z N. Numerical simulation of microflows with moment method. In: Proceedings of the 4th Micro and Nano Flow Conference, Brunel, 2014. ID218. Google Scholar

[109] Wigner E. On the quantum correction for thermodynamic equilibrium. newblock Phys Rev, 1932, 40: 749-759 CrossRef Google Scholar