logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 11 : 1676-1692(2016) https://doi.org/10.1360/N112016-00096

Unification and simplification for position updating formulas in particle swarm optimization

More info
  • ReceivedAug 19, 2016
  • AcceptedSep 9, 2016
  • PublishedNov 9, 2016

Abstract


Funded by

教育部人文社会科学研究青年基金项目(15YJC870010)

四川省科技厅科技支撑项目(2014SZ0104)

四川省教育厅资助科研项目重点项目(16ZA0012)

西南民族大学研究生学位点建设项目(2016-XWD-B0304)


References

[1] Kennedy J, Eberhart R, Shi Y. Swarm Intelligence. Singapore: Elsevier (Singapore) Pte Ltd, 2009. Google Scholar

[2] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, 1995. 1942-1948. Google Scholar

[3] Bergh F V D, Engelbrecht A P. A study of particle swarm optimization particle trajectories. Inf Sci, 2006, 8: 937-971. Google Scholar

[4] Cleghorn C W, Engelbrecht A P. A generalized theoretical deterministic particle swarm model. Swarm Intell, 2014, 1: 35-59. Google Scholar

[5] Kadirkamanathan V, Selvarajah K, Fleming P J. Stability analysis of the particle dynamics in particle swarm optimizer. IEEE Trans Evol Comput, 2006, 3: 245-255. Google Scholar

[6] Poli R. Mean and variance of the sampling distribution of particle swarm optimizers during stagnation. IEEE Trans Evol Comput, 2009, 4: 712-721. Google Scholar

[7] Cleghorn C W, Engelbrecht A. Fully informed particle swarm optimizer: convergence analysis. In: Proceedings of IEEE Congress on Evolutionary Computation, Sendai, 2015. 164-170. Google Scholar

[8] Zhan Z H, Zhang J, Li Y, et al. Adaptive particle swarm optimization. IEEE Trans Syst Man Cyber, 2009, 6: 1362-1381. Google Scholar

[9] Hu M, Wu T F, Weir J D. An adaptive particle swarm optimization with multiple adaptive methods. IEEE Trans Evol Comput, 2013, 5: 705-720. Google Scholar

[10] Chu X, Hu M, Wu T, et al. AHPS 2: an optimizer using adaptive heterogeneous particle swarms. Inf Sci, 2014, 280: 26-52 CrossRef Google Scholar

[11] Saxena N, Tripathi A, Mishra K K, et al. Dynamic-PSO: an improved particle swarm optimizer. In: Proceedings of IEEE Congress on Evolutionary Computation, Sendai, 2015. 212-219. Google Scholar

[12] Mahmoodabadi M J, Mottaghi Z S, Bagheri A. HEPSO: high exploration particle swarm optimization. Inf Sci, 2014, 18: 101-111. Google Scholar

[13] Sun J, Feng B, Xu W. Particle swarm optimization with particles having quantum behavior. In: Proceedings of IEEE Congress on Evolutionary Computation, Portland, 2004. 1571-1580. Google Scholar

[14] Sun J, Fang W, Palade V, et al. Quantum-behaved particle swarm optimization with Gaussian distributed local attractor point. Appl Math Comput, 2011, 7: 3763-3775. Google Scholar

[15] Kennedy J. In search of the essential particle swarm. In: Proceedings of IEEE Congress on Evolutionary Computation, Vancouver, 2006. 1694-1701. Google Scholar

[16] Bratton D, Kennedy J. Defining a standard for particle swarm optimization. In: Proceedings of the IEEE Swarm Intelligence Symposium, Honolulu, 2007. 120-127. Google Scholar

[17] Clerc M, Kennedy J. The particle swarm--explosion, stability, and convergence in a multidimensional complex space. IEEE Trans Evol Comput, 2002, 1: 58-73. Google Scholar

[18] Shi Y, Eberhart R. A modified particle swarm optimizer. In: Proceedings of IEEE International Conference on Evolutionary Computation, Anchorage, 1998. 69-73. Google Scholar

[19] Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, Trondheim, 1999. 1951-1957. Google Scholar

[20] Spears W M, Green D T, Spears D F. Biases in particle swarm optimization. Int J Swarm Intell Res, 2010, 2: 34-57. Google Scholar

[21] Hariya Y, Kurihara T, Shindo T, et al. Lévy flight PSO. In: Proceedings of IEEE Congress on Evolutionary Computation, Sendai, 2015. 2678-2684. Google Scholar

[22] Oca M A M D, Thomas S, Ken V D E, et al. Incremental social learning in particle swarms. IEEE Trans Syst Man Cyber, 2011, 2: 368-384. Google Scholar

[23] Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization. In: Proceedings of IEEE Congress on Evolutionary Computation, Korea, 2001. 101-106. Google Scholar

[24] Mendes R. Population topologies and their influence in particle swarm performance. Dissertation for Ph.D. Degree. Portugal: Minho University, 2004. Google Scholar

[25] Yang S, Li C. A clustering particle swarm optimizer for locating and tracking multiple optima in dynamic environments. IEEE Trans Evol Comput, 2010, 6: 959-974. Google Scholar

[26] Hu J, Wang Z, Qiao S, et al. The fitness evaluation strategy in particle swarm optimization. Appl Math Comput, 2011, 21: 8655-8670. Google Scholar

[27] Helwig S, Branke J, Mostaghim S. Experimental analysis of bound handling techniques in particle swarm optimization. IEEE Trans Evol Comput, 2013, 2: 259-271. Google Scholar

[28] van den Bergh F, Engelbrecht A P. A cooperative approach to particle swarm optimization. IEEE Trans Evol Comput, 2004, 3: 225-239. Google Scholar

[29] Mendes R, Kennedy J, Neves J. The fully informed particle swarm: simpler, maybe better. IEEE Trans Evol Comput, 2004, 3: 204-210. Google Scholar

[30] Liang J J, Qin A K, Suganthan P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans Evol Comput, 2006, 3: 281-295. Google Scholar

[31] Zhan Z H, Zhang J, Li Y, et al. Orthogonal learning particle swarm optimization. IEEE Trans Evol Comput, 2011, 6: 832-847. Google Scholar

[32] Wang L, Yang B, Chen Y. Improving particle swarm optimization using multi-layer searching strategy. Inf Sci, 2014, 274: 70-94 CrossRef Google Scholar

[33] Kennedy J. Bare bones particle swarms. In: Proceedings of the IEEE Swarm Intelligence Symposium, Indianapolis, 2003. 80-87. Google Scholar

[34] Cui Z, Zeng J, Sun G. Predicted particle swarm optimization. In: Proceedings of IEEE International Conference on Cognitive Informatics, Beijing, 2006. 658-661. Google Scholar

[35] Cai M, Zhang X, Tian G, et al. Particle swarm optimization system algorithm. Commun Comput Inf Sci, 2007, 3: 388-395. Google Scholar

[36] Kennedy J. In search of the essential particle swarm. In: Proceedings of IEEE Congress on Evolutionary Computation, Vancouver, 2006. 1679-1686. Google Scholar

[37] Salomon R. Reevaluating genetic algorithm performance under coordinate rotation of benchmark functions. Biosystems, 1996, 39: 263-278 CrossRef Google Scholar

[38] Zeng J C, Cui Z H. A guaranted global convergence particle swarm optimizer. J Comput Res Dev, 2004, 8: 1333-1338 [曾建潮, 崔志华. 一种保证全局收敛的PSO 算法. 计算机研究与发展, 2004, 8: 1333-1338]. Google Scholar

[39] Solis F J, Wets R J B. Minimization by random search techniques. Math Oper Res, 1981, 1: 19-30. Google Scholar

[40] Cleghorn C W, Engelbrecht A P. Particle swarm convergence: an empirical investigation. In: Proceedings of IEEE Congress on Evolutionary Computation, Beijing, 2014. 2524-2530. Google Scholar

[41] Jaccard J, Wan C K. LISREL Approaches to Interaction Effects in Multiple Regression. Calif: Sage Publications, 1996. Google Scholar

[42] Tang K, Yang P, Yao X. Negatively correlated search. IEEE J Sel Areas Commun, 2016, 3: 542-550. Google Scholar

[43] Beyer H G, Schwefel H P. Evolution strategies--a comprehensive introduction. Natural Comput, 2002, 1: 3-52 CrossRef Google Scholar

[44] Storn R, Price K. Differential evolution--a simple and efficient heuristic for global optimization over continuous spaces. J Global Opt, 1997, 4: 341-359. Google Scholar