中文
Affiliations:
1. The Key Lab of Information Processing, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. School of Computer Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
* Corresponding author (melody1235813@163.com
国家自然科学基金(61202212)
security
algorithms
multi-agent
strategy design
game theory
Figure 5
(Color online) Minimax assignment
Algorithm 1 SCOUT-A
for all $i \in \mathcal{T}$
$V_i \leftarrow v_i(0), a_i \leftarrow 0$
end for
${\rm left} \leftarrow m$
while ${\rm left} > 0$ do
$i \leftarrow \arg\!\max_{i \in \mathcal{T} }V_i$, $a_i \leftarrow a_i + 1$, ${\rm left} \leftarrow {\rm left} - 1$, $V_i \leftarrow W_i^{a_i}(0)$
end while
$t_m \leftarrow 0$, $k \leftarrow 0$
while $t_m< t_{\rm e}$ do
${\boldsymbol I} \leftarrow \emptyset$
for all $\forall i, j \in \mathcal{T}$
if $\exists t$ such that $\frac{\partial W_i^{a_i - 1}(t)}{\partial t} < \frac{\partial W_j^{a_j}(t)}{\partial t}$ then
$I_{ij} \leftarrow I_{ij}(A, t_m)$
if $I_{ij} < t_{\rm e}$ then
${\boldsymbol I} \leftarrow {\boldsymbol I} \cup I_{ij}$
end if
if ${\boldsymbol I} = \emptyset$ then
break
$I_{ij} \leftarrow \min({\boldsymbol I})$
if $W_i^{a_i - 1}(I_{ij} - \Delta t) \ge W_j^{a_j}(I_{ij} - \Delta t)$ then
$\tau_k \leftarrow I_{ij}, t_m \leftarrow I_{ij}, a_i \leftarrow a_i - 1, a_j \leftarrow a_j + 1, c_{ij}^k \leftarrow 1, k \leftarrow k + 1$
Algorithm 2 SCOUT-C
$\Psi \leftarrow \emptyset$
for all $\rho \in \{0, \ldots, R_i\}, \rho' \in \{0, \ldots, R_j\}$
$\Psi \leftarrow \Psi \cup \{\theta({\rm Tr})\} \cup \{\theta({\rm Tr}) + d_{ij}\},$ where ${\rm Tr} = (i, j, a_i, a_j, \rho, \rho')$
run SCOUT-D, using $\Psi$ as the time points set
Citations
Altmetric
Article metrics
NetworkPositioning Search results
View all results from this journal/book