SCIENTIA SINICA Informationis, Volume 46 , Issue 10 : 1372-1391(2016) https://doi.org/10.1360/N112016-00085

Massively parallel computing in nano-VLSI interconnect modeling and lithography simulation

More info
  • ReceivedMay 4, 2016
  • AcceptedAug 4, 2016
  • PublishedOct 25, 2016


Funded by






中国科学院国家数学与交叉科学研究中心(NC MIS)


国家高技术研究发展计划(863 计划)








[1] Sabelka R, Harlander C, Selberherr S. The state of the art in interconnect simulation. In: Proceedings of International Conference on Simulation of Semiconductor Processes and Devices, Seattle, 2000. 6-11. Google Scholar

[2] Nagaraj N S, Bonifield T, Singh A, et al. Benchmarks for interconnect parasitic resistance and capacitance. In: Proceedings of the 4th International Symposium on Quality Electronic Design, San Jose, 2003. 163-168. Google Scholar

[3] Kao W H, Lo C, Basel M, et al. Parasitic extraction: current state of the art and future trends. newblock Proc IEEE, 2001, 89: 729-739 CrossRef Google Scholar

[4] Delorme N, Belleville M, Chilo J. Inductance and capacitance analytic formulas for vlsi interconnects. newblock Electron Lett, 1996, 32: 996-997 CrossRef Google Scholar

[5] Nabors K, White J. {FastCap}: a multipole accelerated 3-D capacitance extraction program. newblock IEEE Trans Comput-Aided Design Integr Circ Syst, 1991, 10: 1447-1459 CrossRef Google Scholar

[6] Yan S, Sarin V, Shi W. Sparse transformations and preconditioners for 3-D capacitance extraction. newblock IEEE Trans Comput-Aided Design Integr Circ Syst, 2005, 24: 1420-1426 CrossRef Google Scholar

[7] Shi W, Liu J, Kakani N, et al. A fast hierarchical algorithm for three-dimensional capacitance extraction. newblock IEEE Trans Comput-Aided Design Integr Circ Syst, 2002, 21: 330-336 CrossRef Google Scholar

[8] Ozgun O, Mittra R, Kuzuoglu M. {CBFEM-MPI}: a parallelized version of characteristic basis finite element method for extraction of 3-D interconnect capacitances. newblock IEEE Trans Adv Packag, 2009, 32: 164-174 CrossRef Google Scholar

[9] Chen G L, Zhu H L, Cui T, et al. Parafemcap: a parallel adaptive finite-element method for 3-D VLSI interconnect capacitance extraction. newblock IEEE Trans Microw Theory Tech, 2012, 60: 218-231 CrossRef Google Scholar

[10] Veremey V, Mittra R. A technique for fast calculation of capacitance matrices of interconnect structures. newblock IEEE Trans Compon Packag Manuf Tech Part B: Adv Packag, 1998, 21: 241-249 CrossRef Google Scholar

[11] Coz Y L L, Iverson R B. A stochastic algorithm for high speed capacitance extraction in integrated circuits. newblock Solid-State Electron, 1992, 35: 1005-1012 CrossRef Google Scholar

[12] Yuan Y, Banerjee P. A parallel implementation of a fast multipole-based 3-D capacitance extraction program on distributed memory multicomputers. newblock J Parallel Distrib Comput, 2001, 61: 1751-1774 CrossRef Google Scholar

[13] Zhao X Q, Feng Z. Fast multipole method on gpu tackling 3-D capacitance extraction on massively parallel simd platforms. In: Proceedings of IEEE/ACM Design Automation Conference, New York, 2011. 558-563. Google Scholar

[14] Hsiao Y C, Daniel L. Caplet: a highly parallelized field solver for capacitance extraction using instantiable basis functions. newblock IEEE Trans Comput-Aided Design Integr Circ Syst, 2016, 35: 458-470 CrossRef Google Scholar

[15] Yan C H, Cai W, Zeng X. A parallel method for solving laplace equations with dirichlet data using local boundary integral equations and random walks. newblock SIAM J Sci Comput, 2013, 35: B868-B889 CrossRef Google Scholar

[16] Wong A K, Neureuther A R. Rigorous three-dimensional time-domain finite-difference electromagnetic simulation for photolithographic applications. newblock IEEE Trans Semicond Manuf, 1995, 8: 419-431 CrossRef Google Scholar

[17] Lucas K D, Tanabe H, Strojwas A J. Effcient and rigorous three-dimensional model for optical lithography simulation. newblock J Opt Soc America, 1996, 13: 2187-2199 CrossRef Google Scholar

[18] Cai W, Ji X, Sun J, et al. A schwarz generalized eigen-oscillation spectral element method (GeSEM) for 2-D high frequency electromagnetic scattering in dispersive inhomogeneous media. newblock J Comput Phys, 2008, 227: 9933-9954 CrossRef Google Scholar

[19] Zong K, Zeng X, Ji X, et al. {Highly parallel rigorous simulation of phase shift masks with a generalized eigen-oscillation spectral element method (GeSEM)}. newblock J Micro/Nanolith MEMS MOEMS (JM3), 2009, 8: 031403-9954 CrossRef Google Scholar

[20] Burger S, Kohle R, Zschiedrich L, et al. Benchmark of FEM, waveguide and FDTD algorithms for rigorous mask simulation. Proc SPIE, 2005, 5992: 368-379. Google Scholar

[21] Chen Z, Dai S. On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients. newblock SIAM J Sci Comput, 2002, 24: 443-462 CrossRef Google Scholar

[22] Zhang L B, Zheng W Y, Lu B Z, et al. The toolbox PHG and its applications. Sci Sin Inform, 2016, 10: 1442-1464 [张林波, 郑伟英, 卢本卓, 等. 并行自适应有限元软件平台 PHG 及其应用. 中国科学: 信息科学, 2016, 10: 1442-1464]. Google Scholar

[23] Cui T, Chen J Q, Zhu H L, et al. Algorithms in {ParAFEMImp}: a parallel and wideband impedance extraction program for complicated 3-D geometries. In: Proceedings of IEEE International Conference on High Performance and Smart Computing (HPSC), New York, 2016. 304-309. Google Scholar

[24] Zhang L. A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection. {Numer Math Theory Meth Appl}, 2009, 2: 65-89. Google Scholar

[25] Friedman A. {Stochastic Differential Equations and Applications}. New York: Dover Publications, 2006. Google Scholar

[26] Hwang C O, Given J A. Last-passage monte carlo algorithm for mutual capacitance. newblock Phys Rev E, 2006, 74: 027701-89 CrossRef Google Scholar

[27] Wong A S, Newmark D M, Rolfson J B, et al. Investigating phase-shifting mask layout issues using a {CAD} toolkit. In: Proceedings of International Electron Devices Meeting, Washington, 1991. 705-708. Google Scholar

[28] Yu P, Pan D Z. TIP-OPC: a new topological invariant paradigm for pixel based optical proximity correction. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design, San Jose, 2007. 847-853. Google Scholar

[29] Pan D Z, Liebmann L, Yu B, et al. Pushing multiple patterning in sub-10nm: are we ready? In: Proceedings of the 52nd IEEE/ACM Design Automation Conference (DAC), San Francisco, 2015. 1-6. Google Scholar

[30] Ponomarev G A, Yakubov V P. Kirchhoff's approximation method of geometrical optics in the problem of scattering of waves at an irregular surface. newblock Radiophys Quant Electron, 1976, 19: 849-852 CrossRef Google Scholar

[31] Amestoy P R, Duff I S, L'Excellent J Y, et al. A fully asynchronous multifrontal solver using distributed dynamic scheduling. newblock Siam J Matrix Anal Appl, 2001, 23: 15-41 CrossRef Google Scholar

[32] Chen Z M, Xiang X S. A source transfer domain decomposition method for helmholtz equations in unbounded domain. newblock SIAM J Numer Anal, 2013, 51: 2331-2356 CrossRef Google Scholar