logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 8 : 1108-1135(2016) https://doi.org/10.1360/N112016-00083

Micro/Nano-scale integrated circuits and new emerging hybrid integration techniques

More info
  • ReceivedApr 5, 2016
  • AcceptedMay 31, 2016

Abstract


References

[1] Cheng K, Khakifirooz A, Kulkarni P, et al. Extremely thin SOI (ETSOI) CMOS with record low variability for low power system-on-chip applications. In: Proceedings of IEEE International Electron Devices Meeting, Baltimore, 2009. 1-4. Google Scholar

[2] Auth C, Allen C, Blattner A, et al. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In: Proceedings of Symposium on VLSI Technology (VLSIT), Honolulu, 2012. 131-132. Google Scholar

[3] Liu Q, Yagishita A, Loubet N, et al. Ultra-thin-body and BOX (UTBB) fully depleted (FD) device integration for 22nm node and beyond. In: Proceedings of Symposium on VLSI Technology (VLSIT), Honolulu, 2010. 61-62. Google Scholar

[4] Xu X, Wang R, Huang R, et al. High-performance BOI FinFETs based on bulk-silicon substrate. IEEE Trans Electron Devices, 2008, 55: 3246-3250 CrossRef Google Scholar

[5] Suk S D, Lee S-Y, Kim S-M, et al. High performance 5nm radius twin silicon nanowire MOSFET(TSNWFET): fabrication on bulk Si wafer, characteristics, and reliability. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2005. 717-720. Google Scholar

[6] Bangsaruntip S, Cohen G M, Majumdar A, et al. High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling. In: Proceedings of IEEE International Electron Devices Meeting, Baltimore, 2009. 1-4. Google Scholar

[7] Tian Y, Huang R, Wang Y, et al. New self-aligned silicon nanowire transistors on bulk substrate fabricated by epi-free compatible CMOS technology: process integration, experimental characterization of carrier transport and low frequency noise. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2007. 895-898. Google Scholar

[8] Takagi S, Takenaka M. Advanced CMOS technologies using III-V/Ge channels. Symp. In: Proceedings of International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, 2011. 1-2. Google Scholar

[9] Li Z, An X, Yun Q, et al. Low specific contact resistivity to n-Ge and well-behaved Ge n+/p diode achieved by multiple implantation and multiple annealing technique. Electron Device Lett, 2013, 34: 1097-1099 CrossRef Google Scholar

[10] Liu P Q, Li M, An X. N+/P shallow junction with high dopant activation and low contact resistivity fabricated by solid phase epitaxy method for Ge technology. In: Proceedings of Silicon Nanotechnology Workshop, Kyoto, 2015. 1-2. Google Scholar

[11] Li Z, An X, Yun Q, et al. Tuning schottky barrier height in metal/n-type germanium by inserting an ultrathin yttrium oxide film. ECS Solid State Lett, 2012, 1: 33-34. Google Scholar

[12] Li Z, An X, Li M, et al. Low electron schottky barrier height of NiGe/Ge achieved by ion implantation after germanidation technique. Electron Device Lett, 2012, 33: 1687-1689 CrossRef Google Scholar

[13] Yokoyama M, Iida R, Kim S H, et al. Extremely-thin-body InGaAs- on-insulator MOSFETs on Si fabricated by direct wafer bonding. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2010. 1-4. Google Scholar

[14] Goh K-H, Tan K-H, Yadav S, et al. Gate-all-around CMOS (InAs n-FET and GaSb p-FET) based on vertically-stacked nanowires on a Si platform, enabled by extremely-thin buffer layer technology and common gate stack and contact modules. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2015. 1-4. Google Scholar

[15] Chung C-T, Chen C-W, Lin J-C, et al. First experimental Ge CMOS FinFETs directly on SOI substrate. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2012. 1-4. Google Scholar

[16] Schwierz F. Graphene transistor. Nat Nanotech, 2010, 5: 487-496 CrossRef Google Scholar

[17] Schwierz F, Pezoldt J, Granzner R. Two-dimensional materials and their prospects in transistor electronics. Nanoscale, 2015, 7: 8261-8283 CrossRef Google Scholar

[18] Schwierz F. Graphene transistors: status, prospects, and problems. Proc IEEE, 2013, 101: 1567-1584 CrossRef Google Scholar

[19] Salahuddin S, Datta S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett, 2008, 8: 405-410 CrossRef Google Scholar

[20] Akarvardar K, Elata D, Parsa R, et al. Design considerations for complementary nanoelectromechanical logic gates. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2007. 299-302. Google Scholar

[21] Choi W Y, Song J Y, Choi B Y, et al. 80nm self-aligned complementary I-MOS using double sidewall spacer and elevated drain structure and its applicability to amplifiers with high linearity. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2004. 203-206. Google Scholar

[22] Lonescu A M, Riel H. Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 2011, 479: 329-337 CrossRef Google Scholar

[23] Zhang L, Huang J, Chan M. Steep slope devices and TFETs. In: Tunneling Field Effect Transistor Technology. Berlin: Springer, 2016. 1-31. Google Scholar

[24] Huang Q Q, Zhan Z, Huang R, et al. Self-depleted T-gate schottky barrier tunneling FET with low average subthreshold slope and high ION/IOFF by gate configuration and barrier modulation. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2011. 382-385. Google Scholar

[25] Huang Q Q, Huang R, Wu C L, et al. Comprehensive performance re- assessment of TFETs with a novel design by gate and source engineering from device/circuit perspective. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2014. 335-338. Google Scholar

[26] Borghetti J, Snider G S, Kuekes P L, et al. Memristive switches enable stateful logic operations via material implication. Nat Lett, 2010, 464: 873-876 CrossRef Google Scholar

[27] Yang J J, Strukov D B, Stewart D R. Memristive devices for computing. Nat Nanotech, 2013, 8: 13-24. Google Scholar

[28] Kuzum D, Yu S, Wong H-S P. Synaptic electronics: materials, devices and applications. Nanotechnology, 2013, 24: 382001-24 CrossRef Google Scholar

[29] Bandyopadhyay S, Cahay M. Electron spin for classical information processing: a brief survey of spin-based logic devices, gates and circuits. Nanotechnology, 2009, 20: 170-223. Google Scholar

[30] Morris D, Bromberg D, Zhu J-G, et al. mLogic: ultra-low voltage non- volatile logic circuits using STT-MTJ devices. In: Proceedings of the 49th Annual Design Automation Conference. New York: ACM, 2012. 486-491. Google Scholar

[31] Shoaran M, Tajalli A, Alioto M, et al. Analysis and characterization of variability in subthreshold source-coupled logic circuits. IEEE Trans Circ Syst I: Regular Papers, 2015, 63: 458-467. Google Scholar

[32] Jorgenson R D, Sorensen L, Leet D, et al. Ultralow-power operation in subthreshold regimes applying clockless logic. Proc IEEE, 2010, 98: 299-314 CrossRef Google Scholar

[33] Kaizerman A, Fisher S, Fish A. Subthreshold dual mode logic. IEEE Trans Very Large Scale Integration Syst, 2013, 21: 979-983 CrossRef Google Scholar

[34] Chanda M, Jain S, De S, et al. Implementation of Subthreshold Adiabatic Logic for Ultralow-Power Application. IEEE Trans Very Large Scale Integration Syst, 2015, 23: 278-2790. Google Scholar

[35] Vaddi R, Dasgupta S, Agarwal R P. Device and Circuit Co-Design Robustness Studies in the Subthreshold Logic for Ultralow-Power Applications for 32 nm CMOS. IEEE Trans Electron Dev, 2010, 57: 654-664 CrossRef Google Scholar

[36] Cardoso A J, de Carli L G, Galup-Montoro C, et al. Analysis of the Rectifier Circuit Valid Down to Its Low-Voltage Limit. IEEE Trans Circ Syst-I: Regular Papers, 2012, 59: 106-112 CrossRef Google Scholar

[37] Kim I-D, Cho W-W, Kim J-Y, et al. Design of Low-voltage High-current Rectifier with High-efficiency Output Side for Electrolytic Disinfection of Ballast Water. In: Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, 2010. 1652-1657. Google Scholar

[38] Dayal R, Parsa L. A new single stage AC-DC converter for low voltage electromagnetic energy harvesting. In: Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, 2010. 4447-4452. Google Scholar

[39] Lam Y H, Ki W H, Tsui C Y. Integrated low-loss CMOS active rectifier for wirelessly powered devices. IEEE Trans Circ Syst II: Expr Briefs, 2006, 53: 1378-1382 CrossRef Google Scholar

[40] Seeman M D, Sanders S R, Rabaey J M. An ultra-low-power power management IC for wireless sensor nodes. In: Proceedings of IEEE Custom Integrated Circuits Conference, San Jose, 2007. 567-570. Google Scholar

[41] Peters C, Handwerker J, Maurath D, et al. An ultra-low-voltage active rectifier for energy harvesting applications, circuits and systems (ISCAS). In: Proceedings of IEEE International Symposium on Circuits and Systems, Paris, 2010. 889-892. Google Scholar

[42] Peters C, Handwerker J, Maurath D, et al. A sub-500 mV highly efficient active rectifier for energy harvesting applications. IEEE Trans Circ Syst I: Regular Papers, 2011, 58: 1542-1550 CrossRef Google Scholar

[43] Cheng S, Jin Y, Rao Y, et al. An active voltage doubling AC/DC converter for low-voltage energy harvesting applications. IEEE Trans Power Electron, 2011, 26: 2258-2265 CrossRef Google Scholar

[44] Hashemi S S, Sawan M, Savaria Y. A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices. IEEE Trans Biomed Circ Syst, 2012, 6: 326-335 CrossRef Google Scholar

[45] Zou Y, Han J, Weng X, et al. An ultra-low power QRS complex detection algorithm based on down-sampling wavelet transform. Signal Process Lett, 2013, 20: 515-518 CrossRef Google Scholar

[46] Hyejung K, van Hoof C, Yazicioglu R F. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications. In: Proceedings of Engineering in Medicine and Biology Society, Boston, 2011. 2196-2199. Google Scholar

[47] Xu G, Han J, Zou Y, et al. A 1.5-D multi-channel EEG compression algorithm based on NLSPIHT. Signal Process Lett, 2015, 22: 1118-1122. Google Scholar

[48] Myers J, Savanth A, Howard D, et al. 8.1 an 80nW retention 11.7pJ/cycle active subthreshold ARM Cortex-M0+ subsystem in 65nm CMOS for WSN applications. In: Proceedings of Interantional Solid- State Circuits Conference (ISSCC), San Francisco, 2015. 1-3. Google Scholar

[49] Nose K, Hirabayashi M, Kawaguchi H, et al. VTH-hopping scheme to reduce subthreshold leakage for low-power processors. J Solid-State Circ, 2002, 37: 413-419 CrossRef Google Scholar

[50] Das S, Tokunaga C, Pant S, et al. RazorII: in situ error detection and correction for PVT and SER tolerance. J Solid-State Circ, 2009, 44: 32-48 CrossRef Google Scholar

[51] Kwon I, Kim S, Fick D, et al. Razor-lite: a light-weight register for error detection by observing virtual supply rails. J Solid-State Circ, 2014, 49: 2054-2066 CrossRef Google Scholar

[52] Makimoto T. The age of the digital nomad: impact of CMOS innovation. IEEE Solid-State Circ Mag, 2013, 5: 40-47 CrossRef Google Scholar

[53] Staszewski R, Staszewski R B, Jung T, et al. Software assisted digital RF processor (DRP$^{\rm TM}$) for single-chip GSM radio in 90 nm CMOS. J Solid-State Circ, 2010, 45: 276-288 CrossRef Google Scholar

[54] Deng W, Yang D S, Ueno T, et al. A fully synthesizable all-digital PLL with interpolative phase coupled oscillator, current-output DAC, and fine-resolution digital varactor using gated edge injection technique. J Solid-State Circ, 2015, 50: 68-80 CrossRef Google Scholar

[55] Yip M, Jin R, Nakajima H H, et al. A fully-implantable cochlear implant SoC with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation. J Solid-State Circ, 2015, 50: 214-229 CrossRef Google Scholar

[56] Li X, Tsui C-Y, Ki W-H. A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices. J Solid-State Circ, 2015, 50: 978-989. Google Scholar

[57] Bandyopadhyay S, Mercier P P, Lysaght A C, et al. A 1.1 nW energy- harvesting system with 544 pW quiescent power for next-generation implants. J Solid-State Circ, 2014, 49: 2812-2824. Google Scholar

[58] Chang N C-J, Hurst P J, Levy B C, et al. Background adaptive cancellation of digital switching noise in a pipelined analog-to-digital converter without noise sensors. J Solid-State Circ, 2014, 49: 1397-1407 CrossRef Google Scholar

[59] Narendra S G, Fujino L C, Smith K C. Through the looking glass? the 2015 edition: trends in solid-state circuits from ISSCC. J Solid-State Circ, 2015, 7: 14-24. Google Scholar

[60] Abidi A A. The path to the software-defined radio receiver. J Solid-State Circ, 2007, 42: 954-966 CrossRef Google Scholar

[61] Chen K-C, Chao C-H, Wu A-Y. Thermal-aware 3D network- on-chip (3D NoC) designs: routing algorithms and thermal managements. IEEE Circ Syst Mag, 2015, 15: 45-69 CrossRef Google Scholar

[62] Iyer S S, Kirihata T. Three-dimensional integration: a tutorial for designers. IEEE Solid-State Circ Mag, 2015, 7: 63-74 CrossRef Google Scholar

[63] Hamzaoglu F, Arslan U, Bisnik N, et al. A 1 Gb 2 GHz 128 GB/s bandwidth embedded DRAM in 22 nm tri-gate CMOS technology. J Solid-State Circ, 2015, 50: 150-157 CrossRef Google Scholar

[64] Chen Y-H, Cha W-M, Wu W-C, et al. A 16 nm 128 Mb SRAM in High-$\kappa$ metal-gate FinFET technology with write-assist circuitry for low-VMIN applications. J Solid-State Circ, 2015, 50: 170-177 CrossRef Google Scholar

[65] Song T, Rim W, Jung J, et al. A 14 nm FinFET 128 Mb SRAM with $V_{\rm MIN}$ enhancement techniques for low-power applications. J Solid-State Circ, 2015, 50: 158-169 CrossRef Google Scholar

[66] Borkar S, Ko U, Keshavarzi A, et al. Empowering the killer SoC applications of 2020. In: Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, 2013. 517-517. Google Scholar

[67] Bryzek J, Peterson K, McCulley W. Micromachines on the March. IEEE Spectrum, 1994, 31: 20-31. Google Scholar

[68] Guo S W. High temperature smart-cut SOI pressure sensor. Sensors Actuat A: Phys, 2009, 154: 255-260 CrossRef Google Scholar

[69] Ned A A, Goodman S, Vandeweert J. High accuracy, high temperature pressure probes for aerodynamic testing. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, 2011. 4-7. Google Scholar

[70] Liu G D, Cui W P, Hu H, et al. Silicon on insulator pressure sensor based on a thermostable electrode for high temperature applications. Micro and Nano Lett, 2015, 10: 496-499 CrossRef Google Scholar

[71] Okojie R S, Ned A A, Kurtz A D, et al. (6H)-SiC pressure sensors for high temperature applications. In: Proceedings of Micro Electro Mechanical Systems (MEMS'96), San Diego, 1996. 146-149. Google Scholar

[72] Jin S, Rajgopal S, Mehregany M. Silicon carbide pressure sensor for high temperature and high pressure applications: Influence of substrate material on performance. In: Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, 2011. 2026-2029. Google Scholar

[73] Okojie R S. Fabrication and characterization of single-crystal silicon carbide MEMS. In: MEMS Handbook: Mohamed Gad-el-Hak. Cambridge: CRC Press, 2002, 20: 1-31. Google Scholar

[74] Dzuba J, Vanko G, Drzik M, et al. AlGaN/GaN diaphragm-based pressure sensor with direct high performance piezoelectric transduction mechanism. Appl Phys Lett, 2015, 107: 6386. Google Scholar

[75] Smith A D, Niklaus F, Paussa A, et al. Electromechanical piezoresistive sensing in suspended graphene membranes. Nano Lett, 2013, 13: 3237-3242 CrossRef Google Scholar

[76] Tian H, Shu Y, Wang X-F, et al. A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range. Sci Rep, 2015, 5: 8603-3242 CrossRef Google Scholar

[77] Cao Z, Yuan Y, He G, et al. Fabrication of multi-layer vertically stacked fused silica microsystems. In: Proceedings of Transducers {&} Eurosensors XXVII: the 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS {&} EUROSENSORS XXVII), Barcelona, 2013. 810-813. Google Scholar

[78] Emilio Serrano D E. Integrated inertial measurement units using silicon bulk- acoustic wave gyroscopes. Dissertation for Ph.D. Degree. Atlanta: Georgia Institute of Technology, 2014. 119-121. Google Scholar

[79] Efimovskaya A, Senkal D, Shkel A M. Miniature origami-like folded MEMS TIMU. In: Proceedings of the 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, 2015. 584-587. Google Scholar

[80] Challoner A D, Ge H H, Liu J Y. Boeing disc resonator gyroscope. In: Proceedings of IEEE/ION Position, Location and Navigation Symposium, Monterey, 2014. 504-514. Google Scholar

[81] Cho J Y, Najafi K. A high-q all-fused silica solid-stem wineglass hemispherical resonator formed using micro blow torching and welding. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 2015. 821-824. Google Scholar

[82] Senkal D, Ahamed M J, Ardakani M A A, et al. Demonstration of 1 million Q-Factor on microglassblown wineglass resonators with out-of-plane electrostatic transduction. IEEE/ASME J Microelectromech Syst, 2015, 24: 29-37 CrossRef Google Scholar

[83] Tortonese M, Barrett R C, Quate C F. Atomic resolution with an atomic force microscope using piezoresistive detection. Appl Phys Lett, 1993, 62: 834-836 CrossRef Google Scholar

[84] Chui B W, Stowe T D, Kenny T W, et al. Low-stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope. Appl Phys Lett, 1996, 69: 2767-2769 CrossRef Google Scholar

[85] Pruitt B L, Kenny T W. Piezoresistive cantilevers and measurement system for characterizing low force electrical contacts. Sensors Actuat A: Phys, 2003, 104: 68-77 CrossRef Google Scholar

[86] Dukic M, Adams J D, Fantner G E. Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging. Sci Rep, 2015, 5: 16393-77 CrossRef Google Scholar

[87] Zhao R, Zhang J, Yang J, et al. Multi-target toxin detections based on piezoresistive microcantilevers. In: Proceedings of the 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Freiburg, 2013. 1514-1516. Google Scholar

[88] Zhao R, Wen Y, Yang J, et al. Aptasensor for staphylococcus enterotoxin B detection using high SNR piezoresistive microcantilevers. J Microelectromech Syst, 2014, 23: 1054-1062 CrossRef Google Scholar

[89] Zhao R, Ma W, Wen Y, et al. Trace level detections of abrin with high SNR piezoresistive cantilever biosensor. Sensors Actuat B: Chem, 2015, 212: 112-119 CrossRef Google Scholar

[90] Yu H T, Chen Y, Xu P C, et al. Water-proof `$\upmu$-diving suit' dressed on resonant biochemical sensor for online detection in solution. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 2015. 612-612. Google Scholar

[91] Yu F, Xu P C, Wang J C, et al. Dog-bone resonator with high-q in liquid for low-cost quick `test-paper' detection of analyte droplet. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 2015. 785-785. Google Scholar

[92] Cui Y, Wei Q, Park H, et al. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293: 1289-1292 CrossRef Google Scholar

[93] Stern E, Klemic J F, Routenberg D A, et al. Label-free immunodetection with CMOS-compatible semiconducting nanowires. Nature, 2007, 445: 519-522 CrossRef Google Scholar

[94] Ramgir N S, Yang Y, Zacharias M. Nanowire-based sensors. Small, 2010, 6: 1705-1722 CrossRef Google Scholar

[95] Mu L, Chang Y, Sawtelle S D, et al. Silicon nanowire field-effect transistors--a versatile class of potentiometric nanobiosensors. Access IEEE, 2015, 3: 287-302 CrossRef Google Scholar

[96] Terrones M. Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Cheminform, 2004, 35: 419-501. Google Scholar

[97] Venkatesan B M, Bashir R. Nanopore sensors for nucleic acid analysis. Nat Nanotech, 2011, 6: 615-624 CrossRef Google Scholar

[98] Marx V. Nanopores: a sequencer in your backpack. Nat Methods, 2015, 12: 1015-1018 CrossRef Google Scholar

[99] 方肇伦. 微流控分析芯片. 北京: 科学出版社, 2003. Google Scholar

[100] Manz A, Graber N, Widmer H M. Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuat B, 1990, 1: 244-248 CrossRef Google Scholar

[101] Duan C, Wang W, Xie Q. Review article: fabrication of nanofluidic devices. Biomicrofluidics, 2013, 7: 026501-248 CrossRef Google Scholar

[102] Liu Y, Yobas L. Label-free specific detection of femtomolar cardiac troponin using an integ rated nanoslit array fluidic diode. Nano Lett, 2014, 14: 6983-6990 CrossRef Google Scholar

[103] Zhou K, Perry J M, Jacobson S C. Transport and sensing in nanofluidic devices. Annual Rev Anal Chem, 2011, 4: 321-341 CrossRef Google Scholar

[104] Vlassiouk I, Kozel T R, Siwy Z S. Biosensing with nanofluidic diodes. J Amer Chem Soc, 2009, 131: 8211-8220 CrossRef Google Scholar

[105] Chen Z, Wang Y, Wang W, et al. Nanofluidic electrokinetics in nanoparticle crystal. Appl Phys Lett, 2009, 95: 102-105. Google Scholar

[106] Lei Y, Xie F, Wang W, et al. Suspended nanoparticle crystal (S-NPC): a nanofluidics-based, electrical read-out biosensor. Lab on a Chip, 2010, 10: 2338-2340 CrossRef Google Scholar

[107] Sang J, Du H, Wang W, et al. Protein sensing by nanofluidic crystal and its signal enhancement. Biomicrofluidics, 2013, 7: 024112-2340 CrossRef Google Scholar

[108] Weiland J D, Humayun M S. Visual prosthesis. Proc IEEE, 2008, 96: 1076-1084 CrossRef Google Scholar

[109] Sun Y G, Choi W M, Jiang H Q, et al. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat Nanotech, 2006, 1: 201-207 CrossRef Google Scholar

[110] Khang D-Y, Jiang H Q, Huang Y, et al. Rogers. a stretchable form of single-crystal silicon for high-performance electronics on rubber substrate. Science, 2006, 311: 208-212. Google Scholar

[111] Rogers J A, Someya T, Huang Y G. Materials and mechanics for stretchable electronics. Science, 2010, 327: 1603-1607 CrossRef Google Scholar

[112] Kim D, Lu N, Ma R, et al. Epidermal electronics. Science, 2011, 333: 838-838 CrossRef Google Scholar

[113] Kim D H, Viventi J, Amsden J J, et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat Mater, 2010, 9: 511-517 CrossRef Google Scholar

[114] Kim K, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 2009, 457: 706-710 CrossRef Google Scholar

[115] Fedder G K, Santhanam S, Reed M L, et al. Laminated high-aspect-ratio micro-structures in a conventional CMOS process. Sensor Actuat, 1996, A57: 103-110. Google Scholar

[116] Fedder G K, Howe R T, Liu T-J K, et al. Technologies for cofabricating MEMS and electronics. Proc IEEE, 2008, 96: 306-322 CrossRef Google Scholar

[117] Zhu X, Greve D W, Lawton R, et al. Factorial experiment on CMOS-MEMS RIE post processing. In: Proceedings of the 194th Electrochemical Society Meeting, Symposium on Microstructures and Microfabricated Systems IV, Boston, 1998. 33-42. Google Scholar

[118] Xie H, Fedder G K. A CMOS-MEMS lateral-axis gyroscope. In: Proceedings of the 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2001), Interlaken, 2001. 162-165. Google Scholar

[119] Tan S S, Liu C Y, Yeh L K, et al. A new process for CMOS MEMS capacitive sensors with high sensitivity and thermal stability. J Micromech Microeng, 2011, 21: 35005-35014 CrossRef Google Scholar

[120] Liu Y-C, Tsai M-H, Tang T-L, et al. Post-CMOS selective electroplating technique for the improvement of CMOS-MEMS accelerometers. J Micromech Microeng, 2011, 21: 105005-105013 CrossRef Google Scholar

[121] Li C-S, Hou L-J, Li S-S. Advanced CMOS-MEMS resonator platform. IEEE Electron Dev Lett, 2012, 33: 272-274 CrossRef Google Scholar

[122] InvenSense. Sensor System on Chip. https://www.invensense.com. 2016. Google Scholar

[123] Wang J C, Li X X. Single-side fabricated pressure sensors for IC- foundry-compatible, high-yield, and low-cost volume production. IEEE Electron Dev Lett, 2011, 32: 979-981 CrossRef Google Scholar

[124] Lee K-W, Noriki A, Kiyoyama K J, et al. Three-dimensional hybrid integration technology of CMOS, MEMS, and photonics circuits for optoelectronic heterogeneous integrated systems. IEEE Trans Electron Dev, 2011, 58: 748-757 CrossRef Google Scholar

[125] Jeddeloh J, Keeth B. Hybrid memory cube new DRAM architecture increases density and performance. In: Proceedings of Symposium on VLSI Technology (VLSIT), Honolulu, 2012. 87-88. Google Scholar

[126] Micron Technology. Micron Technology Ships First Samples of Hybrid Memory Cube. http://www.globenewswire. com/NewsRoom/Attachment/21136. 2014. Google Scholar

[127] Vangal S, Howard J, Ruhl G, et al. An 80-tile 1.28 TFLOPS network-on-chip in 65nm CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 2007. 98-99. Google Scholar

[128] Lim S K. 3D-MAPS: 3D massively parallel processor with stacked memory. In: Design for High Performance, Low Power, and Reliable 3D Integrated Circuits. New York: Springer, 2013. 537-560. Google Scholar

[129] Ivo Bolsens. 2.5D ICs: just a stepping stone or a long term alternative to 3D. http://www.xilinx.com. 2011. Google Scholar

[130] Lau J H. Evolution, challenge, and outlook of TSV, 3D IC integration and 3D silicon integration. In: Proceedings of International Symposium on Advanced Packaging Materials (APM), Xiamen, 2011. 462-488. Google Scholar

[131] Li L, Higashi M, Takano A, et al. Cost and performance effective silicon interposer and vertical interconnect for 3D ASIC and memory integration. In: Proceedings of the 64th Electronic Components and Technology Conference (ECTC), Orlando, 2014. 1366-1371. Google Scholar

[132] Lee C K, Chien C H, Chiang C W, et al. Investigation of the process for glass interposer. In: Proceedings of the 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, 2013. 194-197. Google Scholar

[133] Sukumaran V, Bandyopadhyay T, Sundaram V, et al. Low-cost thin glass interposers as a superior alternative to silicon and organic interposers for packaging of 3-D ICs. IEEE Trans Compon Pack Manuf Tech, 2012, 2: 1426-1433 CrossRef Google Scholar

[134] Sukumaran V, Kumar G, Ramachandran K, et al. Design, fabrication, and characterization of ultrathin 3-D glass interposers with through-package-vias at same pitch as TSVs in silicon. IEEE Trans Compon Pack Manuf Tech, 2014, 4: 786-795 CrossRef Google Scholar

[135] Fischer A C, Forsberg F, Lapisa M, et al. Integrating MEMS and ICs. Microsyst Nanoeng, 2015, 2015: 15005. Google Scholar

[136] Yole Développement. Inertial MEMS Manufacturing Trends 2014 - Volumes 1{&}2. http://www.yole.fr/ Reports.aspx. 2014. Google Scholar

[137] Su T H, Nitzan S, Taheri-Tehrani P, et al. MEMS disk resonator gyroscope with integrated analog front-end. In: Proceedings of IEEE SENSORS, Baltimore, 2013. 1-4. Google Scholar

[138] Seeger J, Lim M, Nasiri S. Development of high-performance, high-volume consumer MEMS gyroscopes. In: Proceedings of Solid-State Sensors Actuators Microsystems Workshop, Waikoloa, 2010. 61-64. Google Scholar

[139] 敏芯微电子. 敏芯联手中芯国际推出全球最小的商业化三轴加速度传感器MSA330. http://www.memsensing. com/htmlscn/news{\_}detail.php?id=39. 2015. Google Scholar

[140] Zhao Y, Zavracky P M, Cai Y. Monolithic Sensor Package. U.S. Patent, 13/674, 506, 2012-11-12. Google Scholar