References
[1]
Cheng K, Khakifirooz A, Kulkarni P, et al. Extremely thin SOI (ETSOI) CMOS with record low variability for low power system-on-chip applications. In: Proceedings of IEEE International Electron Devices Meeting, Baltimore, 2009. 1-4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cheng K, Khakifirooz A, Kulkarni P, et al. Extremely thin SOI (ETSOI) CMOS with record low variability for low power system-on-chip applications. In: Proceedings of IEEE International Electron Devices Meeting, Baltimore, 2009. 1-4&
[2]
Auth C, Allen C, Blattner A, et al. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In: Proceedings of Symposium on VLSI Technology (VLSIT), Honolulu, 2012. 131-132.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Auth C, Allen C, Blattner A, et al. A 22nm high performance and low-power CMOS technology featuring fully-depleted tri-gate transistors, self-aligned contacts and high density MIM capacitors. In: Proceedings of Symposium on VLSI Technology (VLSIT), Honolulu, 2012. 131-132&
[3]
Liu Q, Yagishita A, Loubet N, et al. Ultra-thin-body and BOX (UTBB) fully depleted (FD) device integration for 22nm node and beyond. In: Proceedings of Symposium on VLSI Technology (VLSIT), Honolulu, 2010. 61-62.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu Q, Yagishita A, Loubet N, et al. Ultra-thin-body and BOX (UTBB) fully depleted (FD) device integration for 22nm node and beyond. In: Proceedings of Symposium on VLSI Technology (VLSIT), Honolulu, 2010. 61-62&
[4]
Xu
X,
Wang
R,
Huang
R, et al.
High-performance BOI FinFETs based on bulk-silicon substrate.
IEEE Trans Electron Devices,
2008, 55: 3246-3250
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-performance BOI FinFETs based on bulk-silicon substrate&author=Xu X&author=Wang R&author=Huang R&publication_year=2008&journal=IEEE Trans Electron Devices&volume=55&pages=3246-3250
[5]
Suk S D, Lee S-Y, Kim S-M, et al. High performance 5nm radius twin silicon nanowire MOSFET(TSNWFET): fabrication on bulk Si wafer, characteristics, and reliability. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2005. 717-720.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Suk S D, Lee S-Y, Kim S-M, et al. High performance 5nm radius twin silicon nanowire MOSFET(TSNWFET): fabrication on bulk Si wafer, characteristics, and reliability. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2005. 717-720&
[6]
Bangsaruntip S, Cohen G M, Majumdar A, et al. High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling. In: Proceedings of IEEE International Electron Devices Meeting, Baltimore, 2009. 1-4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bangsaruntip S, Cohen G M, Majumdar A, et al. High performance and highly uniform gate-all-around silicon nanowire MOSFETs with wire size dependent scaling. In: Proceedings of IEEE International Electron Devices Meeting, Baltimore, 2009. 1-4&
[7]
Tian Y, Huang R, Wang Y, et al. New self-aligned silicon nanowire transistors on bulk substrate fabricated by epi-free compatible CMOS technology: process integration, experimental characterization of carrier transport and low frequency noise. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2007. 895-898.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tian Y, Huang R, Wang Y, et al. New self-aligned silicon nanowire transistors on bulk substrate fabricated by epi-free compatible CMOS technology: process integration, experimental characterization of carrier transport and low frequency noise. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2007. 895-898&
[8]
Takagi S, Takenaka M. Advanced CMOS technologies using III-V/Ge channels. Symp. In: Proceedings of International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, 2011. 1-2.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Takagi S, Takenaka M. Advanced CMOS technologies using III-V/Ge channels. Symp. In: Proceedings of International Symposium on VLSI Technology, Systems and Applications (VLSI-TSA), Hsinchu, 2011. 1-2&
[9]
Li
Z,
An
X,
Yun
Q, et al.
Low specific contact resistivity to n-Ge and well-behaved Ge n+/p diode achieved by multiple implantation and multiple annealing technique.
Electron Device Lett,
2013, 34: 1097-1099
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low specific contact resistivity to n-Ge and well-behaved Ge n+/p diode achieved by multiple implantation and multiple annealing technique&author=Li Z&author=An X&author=Yun Q&publication_year=2013&journal=Electron Device Lett&volume=34&pages=1097-1099
[10]
Liu P Q, Li M, An X. N+/P shallow junction with high dopant activation and low contact resistivity fabricated by solid phase epitaxy method for Ge technology. In: Proceedings of Silicon Nanotechnology Workshop, Kyoto, 2015. 1-2.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu P Q, Li M, An X. N+/P shallow junction with high dopant activation and low contact resistivity fabricated by solid phase epitaxy method for Ge technology. In: Proceedings of Silicon Nanotechnology Workshop, Kyoto, 2015. 1-2&
[11]
Li Z, An X, Yun Q, et al. Tuning schottky barrier height in metal/n-type germanium by inserting an ultrathin yttrium oxide film. ECS Solid State Lett, 2012, 1: 33-34.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li Z, An X, Yun Q, et al. Tuning schottky barrier height in metal/n-type germanium by inserting an ultrathin yttrium oxide film. ECS Solid State Lett, 2012, 1: 33-34&
[12]
Li
Z,
An
X,
Li
M, et al.
Low electron schottky barrier height of NiGe/Ge achieved by ion implantation after germanidation technique.
Electron Device Lett,
2012, 33: 1687-1689
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low electron schottky barrier height of NiGe/Ge achieved by ion implantation after germanidation technique&author=Li Z&author=An X&author=Li M&publication_year=2012&journal=Electron Device Lett&volume=33&pages=1687-1689
[13]
Yokoyama M, Iida R, Kim S H, et al. Extremely-thin-body InGaAs- on-insulator MOSFETs on Si fabricated by direct wafer bonding. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2010. 1-4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yokoyama M, Iida R, Kim S H, et al. Extremely-thin-body InGaAs- on-insulator MOSFETs on Si fabricated by direct wafer bonding. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2010. 1-4&
[14]
Goh K-H, Tan K-H, Yadav S, et al. Gate-all-around CMOS (InAs n-FET and GaSb p-FET) based on vertically-stacked nanowires on a Si platform, enabled by extremely-thin buffer layer technology and common gate stack and contact modules. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2015. 1-4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Goh K-H, Tan K-H, Yadav S, et al. Gate-all-around CMOS (InAs n-FET and GaSb p-FET) based on vertically-stacked nanowires on a Si platform, enabled by extremely-thin buffer layer technology and common gate stack and contact modules. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2015. 1-4&
[15]
Chung C-T, Chen C-W, Lin J-C, et al. First experimental Ge CMOS FinFETs directly on SOI substrate. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2012. 1-4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chung C-T, Chen C-W, Lin J-C, et al. First experimental Ge CMOS FinFETs directly on SOI substrate. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2012. 1-4&
[16]
Schwierz
F.
Graphene transistor.
Nat Nanotech,
2010, 5: 487-496
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene transistor&author=Schwierz F&publication_year=2010&journal=Nat Nanotech&volume=5&pages=487-496
[17]
Schwierz
F,
Pezoldt
J,
Granzner
R.
Two-dimensional materials and their prospects in transistor electronics.
Nanoscale,
2015, 7: 8261-8283
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Two-dimensional materials and their prospects in transistor electronics&author=Schwierz F&author=Pezoldt J&author=Granzner R&publication_year=2015&journal=Nanoscale&volume=7&pages=8261-8283
[18]
Schwierz
F.
Graphene transistors: status, prospects, and problems.
Proc IEEE,
2013, 101: 1567-1584
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene transistors: status, prospects, and problems&author=Schwierz F&publication_year=2013&journal=Proc IEEE&volume=101&pages=1567-1584
[19]
Salahuddin
S,
Datta
S.
Use of negative capacitance to provide voltage amplification for low power nanoscale devices.
Nano Lett,
2008, 8: 405-410
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Use of negative capacitance to provide voltage amplification for low power nanoscale devices&author=Salahuddin S&author=Datta S&publication_year=2008&journal=Nano Lett&volume=8&pages=405-410
[20]
Akarvardar K, Elata D, Parsa R, et al. Design considerations for complementary nanoelectromechanical logic gates. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2007. 299-302.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Akarvardar K, Elata D, Parsa R, et al. Design considerations for complementary nanoelectromechanical logic gates. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2007. 299-302&
[21]
Choi W Y, Song J Y, Choi B Y, et al. 80nm self-aligned complementary I-MOS using double sidewall spacer and elevated drain structure and its applicability to amplifiers with high linearity. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2004. 203-206.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Choi W Y, Song J Y, Choi B Y, et al. 80nm self-aligned complementary I-MOS using double sidewall spacer and elevated drain structure and its applicability to amplifiers with high linearity. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2004. 203-206&
[22]
Lonescu
A M,
Riel
H.
Tunnel field-effect transistors as energy-efficient electronic switches.
Nature,
2011, 479: 329-337
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tunnel field-effect transistors as energy-efficient electronic switches&author=Lonescu A M&author=Riel H&publication_year=2011&journal=Nature&volume=479&pages=329-337
[23]
Zhang L, Huang J, Chan M. Steep slope devices and TFETs. In: Tunneling Field Effect Transistor Technology. Berlin: Springer, 2016. 1-31.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang L, Huang J, Chan M. Steep slope devices and TFETs. In: Tunneling Field Effect Transistor Technology. Berlin: Springer, 2016. 1-31&
[24]
Huang Q Q, Zhan Z, Huang R, et al. Self-depleted T-gate schottky barrier tunneling FET with low average subthreshold slope and high ION/IOFF by gate configuration and barrier modulation. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2011. 382-385.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang Q Q, Zhan Z, Huang R, et al. Self-depleted T-gate schottky barrier tunneling FET with low average subthreshold slope and high ION/IOFF by gate configuration and barrier modulation. In: Proceedings of IEEE International Electron Devices Meeting, Washington, 2011. 382-385&
[25]
Huang Q Q, Huang R, Wu C L, et al. Comprehensive performance re- assessment of TFETs with a novel design by gate and source engineering from device/circuit perspective. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2014. 335-338.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Huang Q Q, Huang R, Wu C L, et al. Comprehensive performance re- assessment of TFETs with a novel design by gate and source engineering from device/circuit perspective. In: Proceedings of IEEE International Electron Devices Meeting, San Francisco, 2014. 335-338&
[26]
Borghetti
J,
Snider
G S,
Kuekes
P L, et al.
Memristive switches enable stateful logic operations via material implication.
Nat Lett,
2010, 464: 873-876
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Memristive switches enable stateful logic operations via material implication&author=Borghetti J&author=Snider G S&author=Kuekes P L&publication_year=2010&journal=Nat Lett&volume=464&pages=873-876
[27]
Yang J J, Strukov D B, Stewart D R. Memristive devices for computing. Nat Nanotech, 2013, 8: 13-24.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang J J, Strukov D B, Stewart D R. Memristive devices for computing. Nat Nanotech, 2013, 8: 13-24&
[28]
Kuzum
D,
Yu
S,
Wong
H-S P.
Synaptic electronics: materials, devices and applications.
Nanotechnology,
2013, 24: 382001-24
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Synaptic electronics: materials, devices and applications&author=Kuzum D&author=Yu S&author=Wong H-S P&publication_year=2013&journal=Nanotechnology&volume=24&pages=382001-24
[29]
Bandyopadhyay S, Cahay M. Electron spin for classical information processing: a brief survey of spin-based logic devices, gates and circuits. Nanotechnology, 2009, 20: 170-223.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bandyopadhyay S, Cahay M. Electron spin for classical information processing: a brief survey of spin-based logic devices, gates and circuits. Nanotechnology, 2009, 20: 170-223&
[30]
Morris D, Bromberg D, Zhu J-G, et al. mLogic: ultra-low voltage non- volatile logic circuits using STT-MTJ devices. In: Proceedings of the 49th Annual Design Automation Conference. New York: ACM, 2012. 486-491.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Morris D, Bromberg D, Zhu J-G, et al. mLogic: ultra-low voltage non- volatile logic circuits using STT-MTJ devices. In: Proceedings of the 49th Annual Design Automation Conference. New York: ACM, 2012. 486-491&
[31]
Shoaran M, Tajalli A, Alioto M, et al. Analysis and characterization of variability in subthreshold source-coupled logic circuits. IEEE Trans Circ Syst I: Regular Papers, 2015, 63: 458-467.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shoaran M, Tajalli A, Alioto M, et al. Analysis and characterization of variability in subthreshold source-coupled logic circuits. IEEE Trans Circ Syst I: Regular Papers, 2015, 63: 458-467&
[32]
Jorgenson
R D,
Sorensen
L,
Leet
D, et al.
Ultralow-power operation in subthreshold regimes applying clockless logic.
Proc IEEE,
2010, 98: 299-314
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultralow-power operation in subthreshold regimes applying clockless logic&author=Jorgenson R D&author=Sorensen L&author=Leet D&publication_year=2010&journal=Proc IEEE&volume=98&pages=299-314
[33]
Kaizerman
A,
Fisher
S,
Fish
A.
Subthreshold dual mode logic.
IEEE Trans Very Large Scale Integration Syst,
2013, 21: 979-983
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Subthreshold dual mode logic&author=Kaizerman A&author=Fisher S&author=Fish A&publication_year=2013&journal=IEEE Trans Very Large Scale Integration Syst&volume=21&pages=979-983
[34]
Chanda M, Jain S, De S, et al. Implementation of Subthreshold Adiabatic Logic for Ultralow-Power Application. IEEE Trans Very Large Scale Integration Syst, 2015, 23: 278-2790.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chanda M, Jain S, De S, et al. Implementation of Subthreshold Adiabatic Logic for Ultralow-Power Application. IEEE Trans Very Large Scale Integration Syst, 2015, 23: 278-2790&
[35]
Vaddi
R,
Dasgupta
S,
Agarwal
R P.
Device and Circuit Co-Design Robustness Studies in the Subthreshold Logic for Ultralow-Power Applications for 32 nm CMOS.
IEEE Trans Electron Dev,
2010, 57: 654-664
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Device and Circuit Co-Design Robustness Studies in the Subthreshold Logic for Ultralow-Power Applications for 32 nm CMOS&author=Vaddi R&author=Dasgupta S&author=Agarwal R P&publication_year=2010&journal=IEEE Trans Electron Dev&volume=57&pages=654-664
[36]
Cardoso
A J,
de
Carli L G,
Galup-Montoro
C, et al.
Analysis of the Rectifier Circuit Valid Down to Its Low-Voltage Limit.
IEEE Trans Circ Syst-I: Regular Papers,
2012, 59: 106-112
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Analysis of the Rectifier Circuit Valid Down to Its Low-Voltage Limit&author=Cardoso A J&author=de Carli L G&author=Galup-Montoro C&publication_year=2012&journal=IEEE Trans Circ Syst-I: Regular Papers&volume=59&pages=106-112
[37]
Kim I-D, Cho W-W, Kim J-Y, et al. Design of Low-voltage High-current Rectifier with High-efficiency Output Side for Electrolytic Disinfection of Ballast Water. In: Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, 2010. 1652-1657.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Kim I-D, Cho W-W, Kim J-Y, et al. Design of Low-voltage High-current Rectifier with High-efficiency Output Side for Electrolytic Disinfection of Ballast Water. In: Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, 2010. 1652-1657&
[38]
Dayal R, Parsa L. A new single stage AC-DC converter for low voltage electromagnetic energy harvesting. In: Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, 2010. 4447-4452.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dayal R, Parsa L. A new single stage AC-DC converter for low voltage electromagnetic energy harvesting. In: Proceedings of IEEE Energy Conversion Congress and Exposition (ECCE), Atlanta, 2010. 4447-4452&
[39]
Lam
Y H,
Ki
W H,
Tsui
C Y.
Integrated low-loss CMOS active rectifier for wirelessly powered devices.
IEEE Trans Circ Syst II: Expr Briefs,
2006, 53: 1378-1382
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Integrated low-loss CMOS active rectifier for wirelessly powered devices&author=Lam Y H&author=Ki W H&author=Tsui C Y&publication_year=2006&journal=IEEE Trans Circ Syst II: Expr Briefs&volume=53&pages=1378-1382
[40]
Seeman M D, Sanders S R, Rabaey J M. An ultra-low-power power management IC for wireless sensor nodes. In: Proceedings of IEEE Custom Integrated Circuits Conference, San Jose, 2007. 567-570.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Seeman M D, Sanders S R, Rabaey J M. An ultra-low-power power management IC for wireless sensor nodes. In: Proceedings of IEEE Custom Integrated Circuits Conference, San Jose, 2007. 567-570&
[41]
Peters C, Handwerker J, Maurath D, et al. An ultra-low-voltage active rectifier for energy harvesting applications, circuits and systems (ISCAS). In: Proceedings of IEEE International Symposium on Circuits and Systems, Paris, 2010. 889-892.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Peters C, Handwerker J, Maurath D, et al. An ultra-low-voltage active rectifier for energy harvesting applications, circuits and systems (ISCAS). In: Proceedings of IEEE International Symposium on Circuits and Systems, Paris, 2010. 889-892&
[42]
Peters
C,
Handwerker
J,
Maurath
D, et al.
A sub-500 mV highly efficient active rectifier for energy harvesting applications.
IEEE Trans Circ Syst I: Regular Papers,
2011, 58: 1542-1550
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A sub-500 mV highly efficient active rectifier for energy harvesting applications&author=Peters C&author=Handwerker J&author=Maurath D&publication_year=2011&journal=IEEE Trans Circ Syst I: Regular Papers&volume=58&pages=1542-1550
[43]
Cheng
S,
Jin
Y,
Rao
Y, et al.
An active voltage doubling AC/DC converter for low-voltage energy harvesting applications.
IEEE Trans Power Electron,
2011, 26: 2258-2265
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An active voltage doubling AC/DC converter for low-voltage energy harvesting applications&author=Cheng S&author=Jin Y&author=Rao Y&publication_year=2011&journal=IEEE Trans Power Electron&volume=26&pages=2258-2265
[44]
Hashemi
S S,
Sawan
M,
Savaria
Y.
A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices.
IEEE Trans Biomed Circ Syst,
2012, 6: 326-335
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A high-efficiency low-voltage CMOS rectifier for harvesting energy in implantable devices&author=Hashemi S S&author=Sawan M&author=Savaria Y&publication_year=2012&journal=IEEE Trans Biomed Circ Syst&volume=6&pages=326-335
[45]
Zou
Y,
Han
J,
Weng
X, et al.
An ultra-low power QRS complex detection algorithm based on down-sampling wavelet transform.
Signal Process Lett,
2013, 20: 515-518
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An ultra-low power QRS complex detection algorithm based on down-sampling wavelet transform&author=Zou Y&author=Han J&author=Weng X&publication_year=2013&journal=Signal Process Lett&volume=20&pages=515-518
[46]
Hyejung K, van Hoof C, Yazicioglu R F. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications. In: Proceedings of Engineering in Medicine and Biology Society, Boston, 2011. 2196-2199.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hyejung K, van Hoof C, Yazicioglu R F. A mixed signal ECG processing platform with an adaptive sampling ADC for portable monitoring applications. In: Proceedings of Engineering in Medicine and Biology Society, Boston, 2011. 2196-2199&
[47]
Xu G, Han J, Zou Y, et al. A 1.5-D multi-channel EEG compression algorithm based on NLSPIHT. Signal Process Lett, 2015, 22: 1118-1122.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xu G, Han J, Zou Y, et al. A 1.5-D multi-channel EEG compression algorithm based on NLSPIHT. Signal Process Lett, 2015, 22: 1118-1122&
[48]
Myers J, Savanth A, Howard D, et al. 8.1 an 80nW retention 11.7pJ/cycle active subthreshold ARM Cortex-M0+ subsystem in 65nm CMOS for WSN applications. In: Proceedings of Interantional Solid- State Circuits Conference (ISSCC), San Francisco, 2015. 1-3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Myers J, Savanth A, Howard D, et al. 8.1 an 80nW retention 11.7pJ/cycle active subthreshold ARM Cortex-M0+ subsystem in 65nm CMOS for WSN applications. In: Proceedings of Interantional Solid- State Circuits Conference (ISSCC), San Francisco, 2015. 1-3&
[49]
Nose
K,
Hirabayashi
M,
Kawaguchi
H, et al.
VTH-hopping scheme to reduce subthreshold leakage for low-power processors.
J Solid-State Circ,
2002, 37: 413-419
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=VTH-hopping scheme to reduce subthreshold leakage for low-power processors&author=Nose K&author=Hirabayashi M&author=Kawaguchi H&publication_year=2002&journal=J Solid-State Circ&volume=37&pages=413-419
[50]
Das
S,
Tokunaga
C,
Pant
S, et al.
RazorII: in situ error detection and correction for PVT and SER tolerance.
J Solid-State Circ,
2009, 44: 32-48
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=RazorII: in situ error detection and correction for PVT and SER tolerance&author=Das S&author=Tokunaga C&author=Pant S&publication_year=2009&journal=J Solid-State Circ&volume=44&pages=32-48
[51]
Kwon
I,
Kim
S,
Fick
D, et al.
Razor-lite: a light-weight register for error detection by observing virtual supply rails.
J Solid-State Circ,
2014, 49: 2054-2066
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Razor-lite: a light-weight register for error detection by observing virtual supply rails&author=Kwon I&author=Kim S&author=Fick D&publication_year=2014&journal=J Solid-State Circ&volume=49&pages=2054-2066
[52]
Makimoto
T.
The age of the digital nomad: impact of CMOS innovation.
IEEE Solid-State Circ Mag,
2013, 5: 40-47
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The age of the digital nomad: impact of CMOS innovation&author=Makimoto T&publication_year=2013&journal=IEEE Solid-State Circ Mag&volume=5&pages=40-47
[53]
Staszewski
R,
Staszewski
R B,
Jung
T, et al.
Software assisted digital RF processor (DRP$^{\rm TM}$) for single-chip GSM radio in 90 nm CMOS.
J Solid-State Circ,
2010, 45: 276-288
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Software assisted digital RF processor (DRP$^{\rm TM}$) for single-chip GSM radio in 90 nm CMOS&author=Staszewski R&author=Staszewski R B&author=Jung T&publication_year=2010&journal=J Solid-State Circ&volume=45&pages=276-288
[54]
Deng
W,
Yang
D S,
Ueno
T, et al.
A fully synthesizable all-digital PLL with interpolative phase coupled oscillator, current-output DAC, and fine-resolution digital varactor using gated edge injection technique.
J Solid-State Circ,
2015, 50: 68-80
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A fully synthesizable all-digital PLL with interpolative phase coupled oscillator, current-output DAC, and fine-resolution digital varactor using gated edge injection technique&author=Deng W&author=Yang D S&author=Ueno T&publication_year=2015&journal=J Solid-State Circ&volume=50&pages=68-80
[55]
Yip
M,
Jin
R,
Nakajima
H H, et al.
A fully-implantable cochlear implant SoC with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation.
J Solid-State Circ,
2015, 50: 214-229
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A fully-implantable cochlear implant SoC with piezoelectric middle-ear sensor and arbitrary waveform neural stimulation&author=Yip M&author=Jin R&author=Nakajima H H&publication_year=2015&journal=J Solid-State Circ&volume=50&pages=214-229
[56]
Li X, Tsui C-Y, Ki W-H. A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices. J Solid-State Circ, 2015, 50: 978-989.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li X, Tsui C-Y, Ki W-H. A 13.56 MHz wireless power transfer system with reconfigurable resonant regulating rectifier and wireless power control for implantable medical devices. J Solid-State Circ, 2015, 50: 978-989&
[57]
Bandyopadhyay S, Mercier P P, Lysaght A C, et al. A 1.1 nW energy- harvesting system with 544 pW quiescent power for next-generation implants. J Solid-State Circ, 2014, 49: 2812-2824.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bandyopadhyay S, Mercier P P, Lysaght A C, et al. A 1.1 nW energy- harvesting system with 544 pW quiescent power for next-generation implants. J Solid-State Circ, 2014, 49: 2812-2824&
[58]
Chang
N C-J,
Hurst
P J,
Levy
B C, et al.
Background adaptive cancellation of digital switching noise in a pipelined analog-to-digital converter without noise sensors.
J Solid-State Circ,
2014, 49: 1397-1407
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Background adaptive cancellation of digital switching noise in a pipelined analog-to-digital converter without noise sensors&author=Chang N C-J&author=Hurst P J&author=Levy B C&publication_year=2014&journal=J Solid-State Circ&volume=49&pages=1397-1407
[59]
Narendra S G, Fujino L C, Smith K C. Through the looking glass? the 2015 edition: trends in solid-state circuits from ISSCC. J Solid-State Circ, 2015, 7: 14-24.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Narendra S G, Fujino L C, Smith K C. Through the looking glass? the 2015 edition: trends in solid-state circuits from ISSCC. J Solid-State Circ, 2015, 7: 14-24&
[60]
Abidi
A A.
The path to the software-defined radio receiver.
J Solid-State Circ,
2007, 42: 954-966
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The path to the software-defined radio receiver&author=Abidi A A&publication_year=2007&journal=J Solid-State Circ&volume=42&pages=954-966
[61]
Chen
K-C,
Chao
C-H,
Wu
A-Y.
Thermal-aware 3D network- on-chip (3D NoC) designs: routing algorithms and thermal managements.
IEEE Circ Syst Mag,
2015, 15: 45-69
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Thermal-aware 3D network- on-chip (3D NoC) designs: routing algorithms and thermal managements&author=Chen K-C&author=Chao C-H&author=Wu A-Y&publication_year=2015&journal=IEEE Circ Syst Mag&volume=15&pages=45-69
[62]
Iyer
S S,
Kirihata
T.
Three-dimensional integration: a tutorial for designers.
IEEE Solid-State Circ Mag,
2015, 7: 63-74
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-dimensional integration: a tutorial for designers&author=Iyer S S&author=Kirihata T&publication_year=2015&journal=IEEE Solid-State Circ Mag&volume=7&pages=63-74
[63]
Hamzaoglu
F,
Arslan
U,
Bisnik
N, et al.
A 1 Gb 2 GHz 128 GB/s bandwidth embedded DRAM in 22 nm tri-gate CMOS technology.
J Solid-State Circ,
2015, 50: 150-157
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A 1 Gb 2 GHz 128 GB/s bandwidth embedded DRAM in 22 nm tri-gate CMOS technology&author=Hamzaoglu F&author=Arslan U&author=Bisnik N&publication_year=2015&journal=J Solid-State Circ&volume=50&pages=150-157
[64]
Chen
Y-H,
Cha
W-M,
Wu
W-C, et al.
A 16 nm 128 Mb SRAM in High-$\kappa$ metal-gate FinFET technology with write-assist circuitry for low-VMIN applications.
J Solid-State Circ,
2015, 50: 170-177
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A 16 nm 128 Mb SRAM in High-$\kappa$ metal-gate FinFET technology with write-assist circuitry for low-VMIN applications&author=Chen Y-H&author=Cha W-M&author=Wu W-C&publication_year=2015&journal=J Solid-State Circ&volume=50&pages=170-177
[65]
Song
T,
Rim
W,
Jung
J, et al.
A 14 nm FinFET 128 Mb SRAM with $V_{\rm MIN}$ enhancement techniques for low-power applications.
J Solid-State Circ,
2015, 50: 158-169
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A 14 nm FinFET 128 Mb SRAM with $V_{\rm MIN}$ enhancement techniques for low-power applications&author=Song T&author=Rim W&author=Jung J&publication_year=2015&journal=J Solid-State Circ&volume=50&pages=158-169
[66]
Borkar S, Ko U, Keshavarzi A, et al. Empowering the killer SoC applications of 2020. In: Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, 2013. 517-517.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Borkar S, Ko U, Keshavarzi A, et al. Empowering the killer SoC applications of 2020. In: Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers, San Francisco, 2013. 517-517&
[67]
Bryzek J, Peterson K, McCulley W. Micromachines on the March. IEEE Spectrum, 1994, 31: 20-31.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Bryzek J, Peterson K, McCulley W. Micromachines on the March. IEEE Spectrum, 1994, 31: 20-31&
[68]
Guo
S W.
High temperature smart-cut SOI pressure sensor.
Sensors Actuat A: Phys,
2009, 154: 255-260
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High temperature smart-cut SOI pressure sensor&author=Guo S W&publication_year=2009&journal=Sensors Actuat A: Phys&volume=154&pages=255-260
[69]
Ned A A, Goodman S, Vandeweert J. High accuracy, high temperature pressure probes for aerodynamic testing. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, 2011. 4-7.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ned A A, Goodman S, Vandeweert J. High accuracy, high temperature pressure probes for aerodynamic testing. In: Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Orlando, 2011. 4-7&
[70]
Liu
G D,
Cui
W P,
Hu
H, et al.
Silicon on insulator pressure sensor based on a thermostable electrode for high temperature applications.
Micro and Nano Lett,
2015, 10: 496-499
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon on insulator pressure sensor based on a thermostable electrode for high temperature applications&author=Liu G D&author=Cui W P&author=Hu H&publication_year=2015&journal=Micro and Nano Lett&volume=10&pages=496-499
[71]
Okojie R S, Ned A A, Kurtz A D, et al. (6H)-SiC pressure sensors for high temperature applications. In: Proceedings of Micro Electro Mechanical Systems (MEMS'96), San Diego, 1996. 146-149.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Okojie R S, Ned A A, Kurtz A D, et al. (6H)-SiC pressure sensors for high temperature applications. In: Proceedings of Micro Electro Mechanical Systems (MEMS'96), San Diego, 1996. 146-149&
[72]
Jin S, Rajgopal S, Mehregany M. Silicon carbide pressure sensor for high temperature and high pressure applications: Influence of substrate material on performance. In: Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, 2011. 2026-2029.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jin S, Rajgopal S, Mehregany M. Silicon carbide pressure sensor for high temperature and high pressure applications: Influence of substrate material on performance. In: Proceedings of the 16th International Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), Beijing, 2011. 2026-2029&
[73]
Okojie R S. Fabrication and characterization of single-crystal silicon carbide MEMS. In: MEMS Handbook: Mohamed Gad-el-Hak. Cambridge: CRC Press, 2002, 20: 1-31.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Okojie R S. Fabrication and characterization of single-crystal silicon carbide MEMS. In: MEMS Handbook: Mohamed Gad-el-Hak. Cambridge: CRC Press, 2002, 20: 1-31&
[74]
Dzuba J, Vanko G, Drzik M, et al. AlGaN/GaN diaphragm-based pressure sensor with direct high performance piezoelectric transduction mechanism. Appl Phys Lett, 2015, 107: 6386.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dzuba J, Vanko G, Drzik M, et al. AlGaN/GaN diaphragm-based pressure sensor with direct high performance piezoelectric transduction mechanism. Appl Phys Lett, 2015, 107: 6386&
[75]
Smith
A D,
Niklaus
F,
Paussa
A, et al.
Electromechanical piezoresistive sensing in suspended graphene membranes.
Nano Lett,
2013, 13: 3237-3242
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electromechanical piezoresistive sensing in suspended graphene membranes&author=Smith A D&author=Niklaus F&author=Paussa A&publication_year=2013&journal=Nano Lett&volume=13&pages=3237-3242
[76]
Tian
H,
Shu
Y,
Wang
X-F, et al.
A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range.
Sci Rep,
2015, 5: 8603-3242
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A graphene-based resistive pressure sensor with record-high sensitivity in a wide pressure range&author=Tian H&author=Shu Y&author=Wang X-F&publication_year=2015&journal=Sci Rep&volume=5&pages=8603-3242
[77]
Cao Z, Yuan Y, He G, et al. Fabrication of multi-layer vertically stacked fused silica microsystems. In: Proceedings of Transducers {&} Eurosensors XXVII: the 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS {&} EUROSENSORS XXVII), Barcelona, 2013. 810-813.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cao Z, Yuan Y, He G, et al. Fabrication of multi-layer vertically stacked fused silica microsystems. In: Proceedings of Transducers {&} Eurosensors XXVII: the 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS {&} EUROSENSORS XXVII), Barcelona, 2013. 810-813&
[78]
Emilio Serrano D E. Integrated inertial measurement units using silicon bulk- acoustic wave gyroscopes. Dissertation for Ph.D. Degree. Atlanta: Georgia Institute of Technology, 2014. 119-121.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Emilio Serrano D E. Integrated inertial measurement units using silicon bulk- acoustic wave gyroscopes. Dissertation for Ph.D. Degree. Atlanta: Georgia Institute of Technology, 2014. 119-121&
[79]
Efimovskaya A, Senkal D, Shkel A M. Miniature origami-like folded MEMS TIMU. In: Proceedings of the 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, 2015. 584-587.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efimovskaya A, Senkal D, Shkel A M. Miniature origami-like folded MEMS TIMU. In: Proceedings of the 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Anchorage, 2015. 584-587&
[80]
Challoner A D, Ge H H, Liu J Y. Boeing disc resonator gyroscope. In: Proceedings of IEEE/ION Position, Location and Navigation Symposium, Monterey, 2014. 504-514.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Challoner A D, Ge H H, Liu J Y. Boeing disc resonator gyroscope. In: Proceedings of IEEE/ION Position, Location and Navigation Symposium, Monterey, 2014. 504-514&
[81]
Cho J Y, Najafi K. A high-q all-fused silica solid-stem wineglass hemispherical resonator formed using micro blow torching and welding. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 2015. 821-824.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Cho J Y, Najafi K. A high-q all-fused silica solid-stem wineglass hemispherical resonator formed using micro blow torching and welding. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 2015. 821-824&
[82]
Senkal
D,
Ahamed
M J,
Ardakani
M A A, et al.
Demonstration of 1 million Q-Factor on microglassblown wineglass resonators with out-of-plane electrostatic transduction.
IEEE/ASME J Microelectromech Syst,
2015, 24: 29-37
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Demonstration of 1 million Q-Factor on microglassblown wineglass resonators with out-of-plane electrostatic transduction&author=Senkal D&author=Ahamed M J&author=Ardakani M A A&publication_year=2015&journal=IEEE/ASME J Microelectromech Syst&volume=24&pages=29-37
[83]
Tortonese
M,
Barrett
R C,
Quate
C F.
Atomic resolution with an atomic force microscope using piezoresistive detection.
Appl Phys Lett,
1993, 62: 834-836
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Atomic resolution with an atomic force microscope using piezoresistive detection&author=Tortonese M&author=Barrett R C&author=Quate C F&publication_year=1993&journal=Appl Phys Lett&volume=62&pages=834-836
[84]
Chui
B W,
Stowe
T D,
Kenny
T W, et al.
Low-stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope.
Appl Phys Lett,
1996, 69: 2767-2769
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-stiffness silicon cantilevers for thermal writing and piezoresistive readback with the atomic force microscope&author=Chui B W&author=Stowe T D&author=Kenny T W&publication_year=1996&journal=Appl Phys Lett&volume=69&pages=2767-2769
[85]
Pruitt
B L,
Kenny
T W.
Piezoresistive cantilevers and measurement system for characterizing low force electrical contacts.
Sensors Actuat A: Phys,
2003, 104: 68-77
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Piezoresistive cantilevers and measurement system for characterizing low force electrical contacts&author=Pruitt B L&author=Kenny T W&publication_year=2003&journal=Sensors Actuat A: Phys&volume=104&pages=68-77
[86]
Dukic
M,
Adams
J D,
Fantner
G E.
Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging.
Sci Rep,
2015, 5: 16393-77
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Piezoresistive AFM cantilevers surpassing standard optical beam deflection in low noise topography imaging&author=Dukic M&author=Adams J D&author=Fantner G E&publication_year=2015&journal=Sci Rep&volume=5&pages=16393-77
[87]
Zhao R, Zhang J, Yang J, et al. Multi-target toxin detections based on piezoresistive microcantilevers. In: Proceedings of the 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Freiburg, 2013. 1514-1516.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhao R, Zhang J, Yang J, et al. Multi-target toxin detections based on piezoresistive microcantilevers. In: Proceedings of the 17th International Conference on Miniaturized Systems for Chemistry and Life Sciences, Freiburg, 2013. 1514-1516&
[88]
Zhao
R,
Wen
Y,
Yang
J, et al.
Aptasensor for staphylococcus enterotoxin B detection using high SNR piezoresistive microcantilevers.
J Microelectromech Syst,
2014, 23: 1054-1062
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Aptasensor for staphylococcus enterotoxin B detection using high SNR piezoresistive microcantilevers&author=Zhao R&author=Wen Y&author=Yang J&publication_year=2014&journal=J Microelectromech Syst&volume=23&pages=1054-1062
[89]
Zhao
R,
Ma
W,
Wen
Y, et al.
Trace level detections of abrin with high SNR piezoresistive cantilever biosensor.
Sensors Actuat B: Chem,
2015, 212: 112-119
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Trace level detections of abrin with high SNR piezoresistive cantilever biosensor&author=Zhao R&author=Ma W&author=Wen Y&publication_year=2015&journal=Sensors Actuat B: Chem&volume=212&pages=112-119
[90]
Yu H T, Chen Y, Xu P C, et al. Water-proof `$\upmu$-diving suit' dressed on resonant biochemical sensor for online detection in solution. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 2015. 612-612.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yu H T, Chen Y, Xu P C, et al. Water-proof `$\upmu$-diving suit' dressed on resonant biochemical sensor for online detection in solution. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 2015. 612-612&
[91]
Yu F, Xu P C, Wang J C, et al. Dog-bone resonator with high-q in liquid for low-cost quick `test-paper' detection of analyte droplet. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 2015. 785-785.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yu F, Xu P C, Wang J C, et al. Dog-bone resonator with high-q in liquid for low-cost quick `test-paper' detection of analyte droplet. In: Proceedings of the 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), Estoril, 2015. 785-785&
[92]
Cui
Y,
Wei
Q,
Park
H, et al.
Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species.
Science,
2001, 293: 1289-1292
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species&author=Cui Y&author=Wei Q&author=Park H&publication_year=2001&journal=Science&volume=293&pages=1289-1292
[93]
Stern
E,
Klemic
J F,
Routenberg
D A, et al.
Label-free immunodetection with CMOS-compatible semiconducting nanowires.
Nature,
2007, 445: 519-522
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Label-free immunodetection with CMOS-compatible semiconducting nanowires&author=Stern E&author=Klemic J F&author=Routenberg D A&publication_year=2007&journal=Nature&volume=445&pages=519-522
[94]
Ramgir
N S,
Yang
Y,
Zacharias
M.
Nanowire-based sensors.
Small,
2010, 6: 1705-1722
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nanowire-based sensors&author=Ramgir N S&author=Yang Y&author=Zacharias M&publication_year=2010&journal=Small&volume=6&pages=1705-1722
[95]
Mu
L,
Chang
Y,
Sawtelle
S D, et al.
Silicon nanowire field-effect transistors--a versatile class of potentiometric nanobiosensors.
Access IEEE,
2015, 3: 287-302
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Silicon nanowire field-effect transistors--a versatile class of potentiometric nanobiosensors&author=Mu L&author=Chang Y&author=Sawtelle S D&publication_year=2015&journal=Access IEEE&volume=3&pages=287-302
[96]
Terrones M. Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Cheminform, 2004, 35: 419-501.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Terrones M. Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Cheminform, 2004, 35: 419-501&
[97]
Venkatesan
B M,
Bashir
R.
Nanopore sensors for nucleic acid analysis.
Nat Nanotech,
2011, 6: 615-624
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nanopore sensors for nucleic acid analysis&author=Venkatesan B M&author=Bashir R&publication_year=2011&journal=Nat Nanotech&volume=6&pages=615-624
[98]
Marx
V.
Nanopores: a sequencer in your backpack.
Nat Methods,
2015, 12: 1015-1018
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nanopores: a sequencer in your backpack&author=Marx V&publication_year=2015&journal=Nat Methods&volume=12&pages=1015-1018
[99]
方肇伦. 微流控分析芯片. 北京: 科学出版社, 2003.
Google Scholar
http://scholar.google.com/scholar_lookup?title=方肇伦. 微流控分析芯片. 北京: 科学出版社, 2003&
[100]
Manz
A,
Graber
N,
Widmer
H M.
Miniaturized total chemical analysis systems: a novel concept for chemical sensing.
Sensors Actuat B,
1990, 1: 244-248
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Miniaturized total chemical analysis systems: a novel concept for chemical sensing&author=Manz A&author=Graber N&author=Widmer H M&publication_year=1990&journal=Sensors Actuat B&volume=1&pages=244-248
[101]
Duan
C,
Wang
W,
Xie
Q.
Review article: fabrication of nanofluidic devices.
Biomicrofluidics,
2013, 7: 026501-248
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Review article: fabrication of nanofluidic devices&author=Duan C&author=Wang W&author=Xie Q&publication_year=2013&journal=Biomicrofluidics&volume=7&pages=026501-248
[102]
Liu
Y,
Yobas
L.
Label-free specific detection of femtomolar cardiac troponin using an integ rated nanoslit array fluidic diode.
Nano Lett,
2014, 14: 6983-6990
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Label-free specific detection of femtomolar cardiac troponin using an integ rated nanoslit array fluidic diode&author=Liu Y&author=Yobas L&publication_year=2014&journal=Nano Lett&volume=14&pages=6983-6990
[103]
Zhou
K,
Perry
J M,
Jacobson
S C.
Transport and sensing in nanofluidic devices.
Annual Rev Anal Chem,
2011, 4: 321-341
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Transport and sensing in nanofluidic devices&author=Zhou K&author=Perry J M&author=Jacobson S C&publication_year=2011&journal=Annual Rev Anal Chem&volume=4&pages=321-341
[104]
Vlassiouk
I,
Kozel
T R,
Siwy
Z S.
Biosensing with nanofluidic diodes.
J Amer Chem Soc,
2009, 131: 8211-8220
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Biosensing with nanofluidic diodes&author=Vlassiouk I&author=Kozel T R&author=Siwy Z S&publication_year=2009&journal=J Amer Chem Soc&volume=131&pages=8211-8220
[105]
Chen Z, Wang Y, Wang W, et al. Nanofluidic electrokinetics in nanoparticle crystal. Appl Phys Lett, 2009, 95: 102-105.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen Z, Wang Y, Wang W, et al. Nanofluidic electrokinetics in nanoparticle crystal. Appl Phys Lett, 2009, 95: 102-105&
[106]
Lei
Y,
Xie
F,
Wang
W, et al.
Suspended nanoparticle crystal (S-NPC): a nanofluidics-based, electrical read-out biosensor.
Lab on a Chip,
2010, 10: 2338-2340
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Suspended nanoparticle crystal (S-NPC): a nanofluidics-based, electrical read-out biosensor&author=Lei Y&author=Xie F&author=Wang W&publication_year=2010&journal=Lab on a Chip&volume=10&pages=2338-2340
[107]
Sang
J,
Du
H,
Wang
W, et al.
Protein sensing by nanofluidic crystal and its signal enhancement.
Biomicrofluidics,
2013, 7: 024112-2340
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Protein sensing by nanofluidic crystal and its signal enhancement&author=Sang J&author=Du H&author=Wang W&publication_year=2013&journal=Biomicrofluidics&volume=7&pages=024112-2340
[108]
Weiland
J D,
Humayun
M S.
Visual prosthesis.
Proc IEEE,
2008, 96: 1076-1084
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Visual prosthesis&author=Weiland J D&author=Humayun M S&publication_year=2008&journal=Proc IEEE&volume=96&pages=1076-1084
[109]
Sun
Y G,
Choi
W M,
Jiang
H Q, et al.
Controlled buckling of semiconductor nanoribbons for stretchable electronics.
Nat Nanotech,
2006, 1: 201-207
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Controlled buckling of semiconductor nanoribbons for stretchable electronics&author=Sun Y G&author=Choi W M&author=Jiang H Q&publication_year=2006&journal=Nat Nanotech&volume=1&pages=201-207
[110]
Khang D-Y, Jiang H Q, Huang Y, et al. Rogers. a stretchable form of single-crystal silicon for high-performance electronics on rubber substrate. Science, 2006, 311: 208-212.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Khang D-Y, Jiang H Q, Huang Y, et al. Rogers. a stretchable form of single-crystal silicon for high-performance electronics on rubber substrate. Science, 2006, 311: 208-212&
[111]
Rogers
J A,
Someya
T,
Huang
Y G.
Materials and mechanics for stretchable electronics.
Science,
2010, 327: 1603-1607
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Materials and mechanics for stretchable electronics&author=Rogers J A&author=Someya T&author=Huang Y G&publication_year=2010&journal=Science&volume=327&pages=1603-1607
[112]
Kim
D,
Lu
N,
Ma
R, et al.
Epidermal electronics.
Science,
2011, 333: 838-838
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Epidermal electronics&author=Kim D&author=Lu N&author=Ma R&publication_year=2011&journal=Science&volume=333&pages=838-838
[113]
Kim
D H,
Viventi
J,
Amsden
J J, et al.
Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics.
Nat Mater,
2010, 9: 511-517
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics&author=Kim D H&author=Viventi J&author=Amsden J J&publication_year=2010&journal=Nat Mater&volume=9&pages=511-517
[114]
Kim
K,
Zhao
Y,
Jang
H, et al.
Large-scale pattern growth of graphene films for stretchable transparent electrodes.
Nature,
2009, 457: 706-710
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Large-scale pattern growth of graphene films for stretchable transparent electrodes&author=Kim K&author=Zhao Y&author=Jang H&publication_year=2009&journal=Nature&volume=457&pages=706-710
[115]
Fedder G K, Santhanam S, Reed M L, et al. Laminated high-aspect-ratio micro-structures in a conventional CMOS process. Sensor Actuat, 1996, A57: 103-110.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fedder G K, Santhanam S, Reed M L, et al. Laminated high-aspect-ratio micro-structures in a conventional CMOS process. Sensor Actuat, 1996, A57: 103-110&
[116]
Fedder
G K,
Howe
R T,
Liu
T-J K, et al.
Technologies for cofabricating MEMS and electronics.
Proc IEEE,
2008, 96: 306-322
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Technologies for cofabricating MEMS and electronics&author=Fedder G K&author=Howe R T&author=Liu T-J K&publication_year=2008&journal=Proc IEEE&volume=96&pages=306-322
[117]
Zhu X, Greve D W, Lawton R, et al. Factorial experiment on CMOS-MEMS RIE post processing. In: Proceedings of the 194th Electrochemical Society Meeting, Symposium on Microstructures and Microfabricated Systems IV, Boston, 1998. 33-42.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhu X, Greve D W, Lawton R, et al. Factorial experiment on CMOS-MEMS RIE post processing. In: Proceedings of the 194th Electrochemical Society Meeting, Symposium on Microstructures and Microfabricated Systems IV, Boston, 1998. 33-42&
[118]
Xie H, Fedder G K. A CMOS-MEMS lateral-axis gyroscope. In: Proceedings of the 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2001), Interlaken, 2001. 162-165.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xie H, Fedder G K. A CMOS-MEMS lateral-axis gyroscope. In: Proceedings of the 14th IEEE International Conference on Micro Electro Mechanical Systems (MEMS 2001), Interlaken, 2001. 162-165&
[119]
Tan
S S,
Liu
C Y,
Yeh
L K, et al.
A new process for CMOS MEMS capacitive sensors with high sensitivity and thermal stability.
J Micromech Microeng,
2011, 21: 35005-35014
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A new process for CMOS MEMS capacitive sensors with high sensitivity and thermal stability&author=Tan S S&author=Liu C Y&author=Yeh L K&publication_year=2011&journal=J Micromech Microeng&volume=21&pages=35005-35014
[120]
Liu
Y-C,
Tsai
M-H,
Tang
T-L, et al.
Post-CMOS selective electroplating technique for the improvement of CMOS-MEMS accelerometers.
J Micromech Microeng,
2011, 21: 105005-105013
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Post-CMOS selective electroplating technique for the improvement of CMOS-MEMS accelerometers&author=Liu Y-C&author=Tsai M-H&author=Tang T-L&publication_year=2011&journal=J Micromech Microeng&volume=21&pages=105005-105013
[121]
Li
C-S,
Hou
L-J,
Li
S-S.
Advanced CMOS-MEMS resonator platform.
IEEE Electron Dev Lett,
2012, 33: 272-274
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Advanced CMOS-MEMS resonator platform&author=Li C-S&author=Hou L-J&author=Li S-S&publication_year=2012&journal=IEEE Electron Dev Lett&volume=33&pages=272-274
[122]
InvenSense. Sensor System on Chip. https://www.invensense.com. 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=InvenSense. Sensor System on Chip. https://www.invensense.com. 2016&
[123]
Wang
J C,
Li
X X.
Single-side fabricated pressure sensors for IC- foundry-compatible, high-yield, and low-cost volume production.
IEEE Electron Dev Lett,
2011, 32: 979-981
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Single-side fabricated pressure sensors for IC- foundry-compatible, high-yield, and low-cost volume production&author=Wang J C&author=Li X X&publication_year=2011&journal=IEEE Electron Dev Lett&volume=32&pages=979-981
[124]
Lee
K-W,
Noriki
A,
Kiyoyama
K J, et al.
Three-dimensional hybrid integration technology of CMOS, MEMS, and photonics circuits for optoelectronic heterogeneous integrated systems.
IEEE Trans Electron Dev,
2011, 58: 748-757
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-dimensional hybrid integration technology of CMOS, MEMS, and photonics circuits for optoelectronic heterogeneous integrated systems&author=Lee K-W&author=Noriki A&author=Kiyoyama K J&publication_year=2011&journal=IEEE Trans Electron Dev&volume=58&pages=748-757
[125]
Jeddeloh J, Keeth B. Hybrid memory cube new DRAM architecture increases density and performance. In: Proceedings of Symposium on VLSI Technology (VLSIT), Honolulu, 2012. 87-88.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Jeddeloh J, Keeth B. Hybrid memory cube new DRAM architecture increases density and performance. In: Proceedings of Symposium on VLSI Technology (VLSIT), Honolulu, 2012. 87-88&
[126]
Micron Technology. Micron Technology Ships First Samples of Hybrid Memory Cube. http://www.globenewswire. com/NewsRoom/Attachment/21136. 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Micron Technology. Micron Technology Ships First Samples of Hybrid Memory Cube. http://www.globenewswire. com/NewsRoom/Attachment/21136. 2014&
[127]
Vangal S, Howard J, Ruhl G, et al. An 80-tile 1.28 TFLOPS network-on-chip in 65nm CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 2007. 98-99.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vangal S, Howard J, Ruhl G, et al. An 80-tile 1.28 TFLOPS network-on-chip in 65nm CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 2007. 98-99&
[128]
Lim S K. 3D-MAPS: 3D massively parallel processor with stacked memory. In: Design for High Performance, Low Power, and Reliable 3D Integrated Circuits. New York: Springer, 2013. 537-560.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lim S K. 3D-MAPS: 3D massively parallel processor with stacked memory. In: Design for High Performance, Low Power, and Reliable 3D Integrated Circuits. New York: Springer, 2013. 537-560&
[129]
Ivo Bolsens. 2.5D ICs: just a stepping stone or a long term alternative to 3D. http://www.xilinx.com. 2011.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ivo Bolsens. 2.5D ICs: just a stepping stone or a long term alternative to 3D. http://www.xilinx.com. 2011&
[130]
Lau J H. Evolution, challenge, and outlook of TSV, 3D IC integration and 3D silicon integration. In: Proceedings of International Symposium on Advanced Packaging Materials (APM), Xiamen, 2011. 462-488.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lau J H. Evolution, challenge, and outlook of TSV, 3D IC integration and 3D silicon integration. In: Proceedings of International Symposium on Advanced Packaging Materials (APM), Xiamen, 2011. 462-488&
[131]
Li L, Higashi M, Takano A, et al. Cost and performance effective silicon interposer and vertical interconnect for 3D ASIC and memory integration. In: Proceedings of the 64th Electronic Components and Technology Conference (ECTC), Orlando, 2014. 1366-1371.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Li L, Higashi M, Takano A, et al. Cost and performance effective silicon interposer and vertical interconnect for 3D ASIC and memory integration. In: Proceedings of the 64th Electronic Components and Technology Conference (ECTC), Orlando, 2014. 1366-1371&
[132]
Lee C K, Chien C H, Chiang C W, et al. Investigation of the process for glass interposer. In: Proceedings of the 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, 2013. 194-197.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Lee C K, Chien C H, Chiang C W, et al. Investigation of the process for glass interposer. In: Proceedings of the 8th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT), Taipei, 2013. 194-197&
[133]
Sukumaran
V,
Bandyopadhyay
T,
Sundaram
V, et al.
Low-cost thin glass interposers as a superior alternative to silicon and organic interposers for packaging of 3-D ICs.
IEEE Trans Compon Pack Manuf Tech,
2012, 2: 1426-1433
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-cost thin glass interposers as a superior alternative to silicon and organic interposers for packaging of 3-D ICs&author=Sukumaran V&author=Bandyopadhyay T&author=Sundaram V&publication_year=2012&journal=IEEE Trans Compon Pack Manuf Tech&volume=2&pages=1426-1433
[134]
Sukumaran
V,
Kumar
G,
Ramachandran
K, et al.
Design, fabrication, and characterization of ultrathin 3-D glass interposers with through-package-vias at same pitch as TSVs in silicon.
IEEE Trans Compon Pack Manuf Tech,
2014, 4: 786-795
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Design, fabrication, and characterization of ultrathin 3-D glass interposers with through-package-vias at same pitch as TSVs in silicon&author=Sukumaran V&author=Kumar G&author=Ramachandran K&publication_year=2014&journal=IEEE Trans Compon Pack Manuf Tech&volume=4&pages=786-795
[135]
Fischer A C, Forsberg F, Lapisa M, et al. Integrating MEMS and ICs. Microsyst Nanoeng, 2015, 2015: 15005.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fischer A C, Forsberg F, Lapisa M, et al. Integrating MEMS and ICs. Microsyst Nanoeng, 2015, 2015: 15005&
[136]
Yole Développement. Inertial MEMS Manufacturing Trends 2014 - Volumes 1{&}2. http://www.yole.fr/ Reports.aspx. 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yole Développement. Inertial MEMS Manufacturing Trends 2014 - Volumes 1{&}2. http://www.yole.fr/ Reports.aspx. 2014&
[137]
Su T H, Nitzan S, Taheri-Tehrani P, et al. MEMS disk resonator gyroscope with integrated analog front-end. In: Proceedings of IEEE SENSORS, Baltimore, 2013. 1-4.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Su T H, Nitzan S, Taheri-Tehrani P, et al. MEMS disk resonator gyroscope with integrated analog front-end. In: Proceedings of IEEE SENSORS, Baltimore, 2013. 1-4&
[138]
Seeger J, Lim M, Nasiri S. Development of high-performance, high-volume consumer MEMS gyroscopes. In: Proceedings of Solid-State Sensors Actuators Microsystems Workshop, Waikoloa, 2010. 61-64.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Seeger J, Lim M, Nasiri S. Development of high-performance, high-volume consumer MEMS gyroscopes. In: Proceedings of Solid-State Sensors Actuators Microsystems Workshop, Waikoloa, 2010. 61-64&
[139]
敏芯微电子. 敏芯联手中芯国际推出全球最小的商业化三轴加速度传感器MSA330. http://www.memsensing. com/htmlscn/news{\_}detail.php?id=39. 2015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=敏芯微电子. 敏芯联手中芯国际推出全球最小的商业化三轴加速度传感器MSA330. http://www.memsensing. com/htmlscn/news{\_}detail.php?id=39. 2015&
[140]
Zhao Y, Zavracky P M, Cai Y. Monolithic Sensor Package. U.S. Patent, 13/674, 506, 2012-11-12.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhao Y, Zavracky P M, Cai Y. Monolithic Sensor Package. U.S. Patent, 13/674, 506, 2012-11-12&