logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 10 : 1510-1526(2016) https://doi.org/10.1360/N112016-00078

SN algorithms for neutron transport and their applications

More info
  • ReceivedMar 31, 2016
  • AcceptedOct 13, 2016
  • PublishedOct 25, 2016

Abstract


Funded by

国家重点基础研究发展计划(973计划)

(2011CB309705)

国家自然科学基金(11271054)

中国工程物理研究院科学技术发展基金重点课题(2014A0202009)


References

[1] Carlson B G. Solution of the transport equation by sn approximations. Los Alamos Scientific Laboratory Report LA-1599, 1953. Google Scholar

[2] Lathrop K D, Carlson B G. Discrete ordinates angular quadrature of the neutron transport equation. Los Alamos Scientific Laboratory Report LA-3186, 1965. Google Scholar

[3] Walters W F. Use of the chebychev-legendre quadrature set in discrete-ordinates codes. Los Alamos Scientific Laboratory Report LA-11342-C, 1988. Google Scholar

[4] Morel J E. A hybrid collocation-galerkin-sn method for solving the boltzmann transport equation. Nucl Sci Eng, 1989, 101: 72-87 CrossRef Google Scholar

[5] Walters W F, Morel J E. Investigation of linear-discontinuous angular differencing for the 1-D spherical geometry Sn equations. In: Proceedings of the International Topical Meeting on Advances in Mathematics, Computation, and Reactor Physics, Pittsburgh, 1991. Google Scholar

[6] Dahl J A, Ganapol B D, Morel J E. Positive scattering cross sections using constrained least-squares. In: Proceedings of M&C 99-Madrid: International Conference on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications, Madrid, 1999. Google Scholar

[7] Lathrop K D. Spatial differencing of the transport equation: positivity vs. accuracy. J Comput Phys, 1969, 4: 475-498 CrossRef Google Scholar

[8] Reed W H, Hill T R, Brinkley F W, et al. TRIPLET: a two-dimensional multigroup, triangular-mesh, planar geometry, explicit transport code. Los Alamos Scientific Laboratory report LA-5428-MS, 1973. Google Scholar

[9] Alcouffe R E, Larsen E W, Miller W F, et al. Computational efficiency of numerical methods for the multigroup discrete-ordinates neutron transport equations: the slab geometry case. Nucl Sci Eng, 1979, 71: 111-127 CrossRef Google Scholar

[10] Walters W F, O'Dell R D. Nodal methods for discrete-ordinates transport problems in (x,y) geometry. In: Proceedings of ANS/ENS Joint Topical Meeting on Mathematical Methods in Nuclear Engineering, Munich, 1981. 115. Google Scholar

[11] Walters W F, Wareing T A. A non-linear positive method for solving the transport equation on coarse meshes. In: Proceedings of the 8th International Conference on Radiation Shielding, Arlington, 1994. 173. Google Scholar

[12] Wareing T A, Walters W F. Exponential-discontinuous scheme for X-Y geometry transport problems. Trans American Nucl Soc, 1995, 72. Google Scholar

[13] Wareing T A, McGhee J M, Morel J E, et al. Discontinuous finite-element methods sn methods on 3-d unstructured grids. In: Proceedings of M&C'99-Madrid: International Conference on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications, Madrid, 1999. Google Scholar

[14] Voronkov A V, Sychugova E P. CDSN --method for solving the transport equation. Trans Theory Stat Phys, 1993, 22: 221-245 CrossRef Google Scholar

[15] Castrianni C L, Adams M L. A nonlinear corner-balance spatial discretization for transport on arbitrary grids. Nucl Sci Eng, 1998, 128: 278-296. Google Scholar

[16] Thompson K T, Adams M L. A spatial discretization for solving the transport equation on unstructured grids of polyhedra. In: Proceedings of M&C 99-Madrid: International Conference on Mathematics and Computation, Reactor Physics and Environmental Analysis in Nuclear Applications, Madrid, 1999. Google Scholar

[17] Du S H. Computer Simulation of Transport Problems. Changsha: Hunan Science Technology Press, 1989 [杜书华. 输运问题的计算机模拟. 长沙: 湖南科学技术出版社, 1989]. Google Scholar

[18] Du M S, Feng T k, Fu L X, et al. The triangle discontinuous finite element methods of two dimension transport problems. Chinese J Comput Phys, 1984, 1: 84-99 [杜明笙, 冯铁凯, 傅连祥, 等. 解二维输运问题的三角网间断有限元方法. 计算物理, 1984, 1: 84-99]. Google Scholar

[19] Guo B L, Shen L J. Galerkin finite element methods for nonlinear neutron transport equation. Commu Appl Math Comput, 1989, 3: 8-20 [郭柏灵, 沈隆钧. 非线性中子输运方程的Galerkin 有限元解. 应用数学与计算数学学报, 1989, 3: 8-20]. Google Scholar

[20] Yuan G W. Convergence of PN Approximation for the neutron transport equation with reflective boundary condition. J Math Phys, 2000, 41: 867-873 CrossRef Google Scholar

[21] Shen Z J. Study on the numerical solution of the neutron transport equation and the lattice Boltzmann methods for Burgers equation. Dissertation for Ph.D. Degree. Mianyang: Chinese Engineering Physics, 2000 [沈智军. 中子输运方程数值解与Burges 方程格子Boltzmann 方法研究. 博士学位论文. 绵阳: 中国工程物理研究院, 2000]. Google Scholar

[22] Morel J E, McGhee J M, Larsen E W. A three-dimensional time-dependent unstructured tetrahedral-mesh spn method. Nucl Sci Eng, 1996, 123: 319-327. Google Scholar

[23] Shin U, Miller W F. The time-dependent simplified P2 equations: asymptotic analyses and numerical experiments. Nucl Sci Eng, 1998, 128: 27-46. Google Scholar

[24] Fu L X. The discontinuous finite element methods of two dimension non-stationary transport equations. In: Proceedings of the 7th Conference on Numerical Calculations of Reactors and Particle Transport, Kunming, 1998. 33-42 [傅连祥. 二维非定态中子输运方程的间断有限元法. 见: 第七届反应堆数值计算与粒子输运学术交流会论文集, 昆明, 1998. 33-42]. Google Scholar

[25] Morel J E, McGhee J M, Olvey L A, et al. Even-parity Sn equations on the connection machine. In: Proceedings of the International Topical Meeting on Advances in Mathematics, Computation, and Reactor Physics, Pittsburgh, 1991. Google Scholar

[26] Baker R S, Koch K R. An Sn algorithm for the massively parallel cm-200 computer. Nucl Sci Eng, 1998, 128: 312-320 CrossRef Google Scholar

[27] Hang X D, Hong Z Y, Li S G, et al. Deterministic numerical methods for partical transport equations. Chinese J Comput Phys, 2014, 31: 127-154 [杭旭登, 洪振英, 李双贵, 等. 粒子输运方程的确定论计算方法. 计算物理, 2014, 31: 127-154]. Google Scholar

[28] Hong Z Y, Yuan G W. Linear Discontinuous finite element method for particle transport equation. Chinese J Comput Phys, 2009, 26: 325-334 [洪振英, 袁光伟. 粒子输运方程的线性间断有限元方法. 计算物理, 2009, 26: 325-334]. Google Scholar

[29] Hong Z Y, Yuan G W, Fu X D. Time discrete scheme matched adaptive time step for particle transport equations. Prog Nucl Energy, 2012, 59: 6-12 CrossRef Google Scholar

[30] Hong Z Y, Yuan G W, Fu X D, et al. Modified time discrete scheme for time-dependent neutron transport equation. Nucl Power Eng, 2010, 31: 34-37 [洪振英, 袁光伟, 傅学东, 等. 动态中子输运方程的修正时间离散格式. 核动力工程, 2010, 31: 34-37]. Google Scholar

[31] Hong Z Y, Yuan G W. A parallel algorithm with interface prediction and correction for spherical geometric transport equation. Prog Nucl Energy, 2009, 51: 268-273 CrossRef Google Scholar

[32] OECD/NEA. The international criticality safety benchmark evaluation project (ICSBEP). http://icsbep.inel.gov/. Google Scholar