logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 10 : 1421-1441(2016) https://doi.org/10.1360/N112016-00075

The design principle for the programming of real space parallel adaptive calculations for electronic structure

More info
  • ReceivedMar 28, 2016
  • AcceptedAug 15, 2016
  • PublishedOct 25, 2016

Abstract


Funded by

国家自然科学基金(11321061)

国家自然科学基金(91330202)

国家重点基础研究发展计划(973计划)

(2011CB309703)


References

[1] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 1964, 136: B864-B871 CrossRef Google Scholar

[2] Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects. Phys Rev A, 1965, 140: 1133-1138 CrossRef Google Scholar

[3] Zhou A. Some open mathematical problems in electronic structure models and calculations. Sci China Math, 2015, 45: 929-938 [周爱辉. 电子结构模型与计算的若干数学问题. 中国科学: 数学, 2015, 45: 929-938]. Google Scholar

[4] Beck T L. Real-space mesh techniques in density-function theory. Rev Mod Phys, 2000, 72: 1041-1080 CrossRef Google Scholar

[5] Dai X, Zhou A. Finite element methods for electronic structure calculations. Sci China Chem, 2015, 45: 800-811 [戴小英, 周爱辉. 电子结构计算的有限元方法. 中国科学: 化学, 2015, 45: 800-811]. Google Scholar

[6] Torsti T, Eirola T, Enkovaara J, et al. Three real-space discretization techniques in electronic structure calculations. Phys Stat Sol, 2006, B243: 1016-1053. Google Scholar

[7] Chen H. Finite dimension approximations in density functional theory. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2010 [陈华杰. 密度泛函理论的有限维逼近. 博士学位论文. 北京: 中国科学院研究生院, 2010]. Google Scholar

[8] Dai X. Adaptive and localization based finite element discretizations for the first-principles electronic structure calculation. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2008 [戴小英. 第一原理电子结构计算的有限元自适应及局部算法研究. 博士学位论文. 北京: 中国科学院研究生院, 2008]. Google Scholar

[9] Fang J. Algorithm study for real-space first-principles calculations. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2013 [方俊. 第一原理计算的若干实空间算法研究. 博士学位论文. 北京: 中国科学院研究生院, 2013]. Google Scholar

[10] Gao X. Hexahedral finite element methods for the first-principles electronic structure calculations. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2009 [高兴誉. 第一原理计算的若干实空间算法研究. 博士学位论文. 北京: 中国科学院研究生院, 2009]. Google Scholar

[11] He L. Study of the first-principles electronic structure calculations: numerical analysis and numerical simulation. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2012 [何连花. 第一原理电子结构计算研究: 数值分析与数值模拟. 博士学位论文. 北京: 中国科学院研究生院, 2012]. Google Scholar

[12] Liu F. The first-principles studies: two-scale finite element discretizations and the calculations of ideal strength. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2006 [刘芳. 第一原理计算研究: 双尺度有限元组合离散与理想强度分析. 博士学位论文. 北京: 中国科学院研究生院, 2006]. Google Scholar

[13] Shen L. Parallel adaptive finite element algorithms for electronic structure computing based on density functional theory. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2005 [沈丽华. 基于密度泛函理论的电子结构有限元并行自适应算法. 博士学位论文. 北京: 中国科学院研究生院, 2005]. Google Scholar

[14] Yang Z. Finite volume discretization based first-principles electronic structure calculations. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2011 [杨章. 基于有限体积离散的第一原理电子结构计算. 博士学位论文. 北京: 中国科学院研究生院, 2011]. Google Scholar

[15] Zhang D. The application of finite element method in electronic structure calculations. Dissertation for Ph.D. Degree. Shanghai: Fudan University, 2007 [张笛儿. 有限元方法在电子结构计算中的应用. 上海: 复旦大学, 2007]. Google Scholar

[16] Zhang X. Algorithm study for real-space ground and excited states in first-principles calculations. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2015 [张昕. 第一原理基态与激发态实空间算法和模型研究. 博士学位论文. 北京: 中国科学院大学, 2015]. Google Scholar

[17] Zhu J. First-principles calculations based on mean-field model and strongly correlated theory. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2014 [朱金伟. 基于平均场模型与强关联理论的第一原理计算. 博士学位论文. 北京: 中国科学院大学, 2014]. Google Scholar

[18] Dirac P A M. The Principles of Quantum Mechanics. 4th ed. Oxford: Oxford University Press, 1988. Google Scholar

[19] Fermi E. Un metodo statistics per la determinazione di alcune proprieta dell'atomoi. Rend Accad Lincei, 1927, 6: 602-607. Google Scholar

[20] Fermi E. A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements. Zeit Fur Physik, 1928, 48: 73-79 CrossRef Google Scholar

[21] Thomas L H. The calculation of atomic fields. Proc Cambridge Phil Soc, 1927, 23: 542-548 CrossRef Google Scholar

[22] Zhou A. Hohenberg-Kohn theorem for Coulomb type systems and its generalization. J Math Chem, 2012, 50: 2746-2754 CrossRef Google Scholar

[23] Zhou A. Mathematical Model of Electronic Structure. Lecture Notes for Graduate University of Chinese Academy of Sciences, 2010 [周爱辉. 电子结构的数学模型. 中国科学院研究生院讲义, 2010]. Google Scholar

[24] Agmon S. Lectures on the Exponential Decay of Solutions of Second-Order Elliptic Operators. Princeton: Princeton University Press, 1981. Google Scholar

[25] G{å}rding L. On the essential spectrum of Schrödinger operators. J Funct Anal, 1983, 52: 1-10 CrossRef Google Scholar

[26] Simon B. Schrödinger operators in the twentieth century. J Math Phys, 2000, 41: 3523-3555 CrossRef Google Scholar

[27] Zhang X, Zhou A. A Singularity-based eigenfunction decomposition for Kohn-Sham quations. Sci Sin Math, 2016, 59: 1623-1634. Google Scholar

[28] Adams R A. Sobolev Spaces. New York: Academic Press, 1975. Google Scholar

[29] Wang L H, Xu X J. The Mathematical Theory of Finite Element Methods. Beijing: Science Press, 2004 [王烈衡, 许学军. 有限元方法的数学基础. 北京: 科学出版社, 2004]. Google Scholar

[30] Almbladh C O, von Barth U. Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. Phys Rev B, 1985, 31: 3231-3244. Google Scholar

[31] Fattebert J L, Nardelli M B. Finite Difference Methods in Ab Initio Electronic Structure and Quantum Transport Calculations of Nanostructures. In: Handbook of Numerical Analysis. Amsterdam: Elsevier, 2003. Google Scholar

[32] Fattebert J L, Hornung R D, Wissink A M. Finite element approach for density functional theory calculations on locally-refined meshes. J Comput Phys, 2007, 223: 759-773 CrossRef Google Scholar

[33] Martin R M. Electronic Structure: Basic Theory and Practical Methods. Cambridge: Cambridge University Press, 2004. Google Scholar

[34] Xie X D, Lu D. Energy Band Theory of Solids. Shanghai: Fudan Univetsity Press, 1998 [谢希德, 陆栋. 固体能带理论. 上海: 复旦大学出版设, 1998]. Google Scholar

[35] He L, Liu F, Hautier G, et al. Accuracy of generalized gradient approximation functionals for density functional perturbation theory calculations. Phys Rev B, 2014, 89: 064305-064320 CrossRef Google Scholar

[36] Slater J C. A simpification of the Hartree-Fock method. Phys Rev, 1951, 81: 385-390 CrossRef Google Scholar

[37] Ceperley D M, Alder B J. Ground state of the electron gas by a stochastic method. Phys Rev Lett, 1980, 45: 566-569 CrossRef Google Scholar

[38] Perdew J P, Wang Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B, 1992, 45: 13244-13249 CrossRef Google Scholar

[39] Perdew J P, Zunger A. Self-interaction correction to density-functional approximations for many-electron. Phys Rev B, 1981, 23: 5048-5079 CrossRef Google Scholar

[40] Vosko S H, Wilk L, Nusair M. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys, 1980, 58: 1200-1211 CrossRef Google Scholar

[41] Hamann D R, Schlüter M, Chiang C. Norm-conserving pseudopotentials. Phys Rev Lett, 1979, 43: 1494-1497 CrossRef Google Scholar

[42] Troullier N, Martins J L. Efficient pseudopotentials for plane-wave calculations. Phys Rev B, 1991, 43: 1993-2006 CrossRef Google Scholar

[43] Blöchl P E. Generalized separable potentials for electronic-structure calculations. Phys Rev B, 1990, 41: 5414-5416 CrossRef Google Scholar

[44] Vanderbilt D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B, 1990, 41: 7892-7895 CrossRef Google Scholar

[45] Kleinman L, Bylander D M. Efficacious form for model pseudopotentials. Phys Rev Lett, 1982, 48: 1425-1428 CrossRef Google Scholar

[46] Johnson D D. Modified Broyden's method for accelerating convergence in self-consistent calculations. Phys Rev B, 1988, 38: 12807-12813 CrossRef Google Scholar

[47] Anderson D G. Iterative procedures for nonlinear integral equations. J Assoc Comput Mach, 1965, 12: 547-560 CrossRef Google Scholar

[48] Pulay P. Convergence acceleration of iterative sequences. the case of scf iteration. Chem Phys Lett, 1980, 73: 393-398. Google Scholar

[49] Pulay P. Improved SCF convergence acceleration. J Comput Chem, 1982, 3: 556-560 CrossRef Google Scholar

[50] Yuan Y X, Sun W Y. Optimization Theory and Methods. Beijing: Science Press, 1997 [袁亚湘, 孙文瑜. 最优化理论与方法. 北京: 科学出版社, 1997]. Google Scholar

[51] Singh D, Krakauer H, Wang C S. Accelerating the convergence of self-consistent linearized augmented-plane-wave calculations. Phys Rev B, 1986, 34: 8391-8393 CrossRef Google Scholar

[52] Srivastava G P. Broyden's method for self-consistent field convergence acceleration. J Phys A, 1984, 17: 317-321 CrossRef Google Scholar

[53] Saad Y. Iterative Methods for Sparse Linear Systems. 2nd ed. Society for Industrial and Applied Mathematics, 2003. Google Scholar

[54] Brandt A. Multilevel adaptative solutions to boundary-value problems. Math Comput, 1977, 31: 333-390 CrossRef Google Scholar

[55] Strakhovskaya L. An iterative method for evaluating the first eigenvalue of an elliptic operator. USSR Comput Math Math Phys, 1977, 17: 88-101 CrossRef Google Scholar

[56] Saad Y. Numerical Methods for Large Eigenvalue Problems. New York: Halstead Press, 1992. Google Scholar

[57] Calvetti D, Reichel L, Sorensen D C. An implicitly restarted Lanczos method for large symmetric eigenvalue problems. Electron Trans Numer Anal, 1994, 2: 1-21. Google Scholar

[58] Knyazev A V. Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method. SIAM J Sci Comput, 2001, 23: 517-541 CrossRef Google Scholar

[59] Dai X, Gao X, Zhou A. An introduction to the Davidson type method and its implementation. J Numer Methods Comput Appl, 2006, 27: 218-240 [戴小英, 高兴誉, 周爱辉. 特征值问题的Davidson型方法及其实现技术. 数值计算与计算机应用, 2006, 27: 218-240]. Google Scholar

[60] Sleijpen G L G, van der Vorst H A. A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J Matrix Anal Appl, 1996, 17: 401-425 CrossRef Google Scholar

[61] Chen H, Dai X, Gong X, et al. Adaptive finite element approximations for {K}ohn-{S}ham models. Multiscale Model Simul, 2014, 12: 1828-1869 CrossRef Google Scholar

[62] Chen H, Gong X, He L, et al. Adaptive finite element approximations for a class of nonlinear eigenvalue problems in quantum physics. Adv Appl Math Mech, 2011, 3: 493-518 CrossRef Google Scholar

[63] Fang J, Gao X, Zhou A. A Kohn-Sham equation solver based on hexahedral finite elements. J Comput Phys, 2012, 231: 3166-3180 CrossRef Google Scholar

[64] Shen L, Zhou A. A defect correction scheme for finite element eigenvalues with applications to quantum chemistry. SIAM J Sci Comput, 2006, 28: 321-338 CrossRef Google Scholar

[65] Zhang D, Shen L, Zhou A, et al. Finite element method for solving {K}ohn-{S}ham equations based on self-adaptive tetrahedral mesh. Phys Lett A, 2008, 372: 5071-5076 CrossRef Google Scholar

[66] Dai X, Gong X, Yang Z, et al. Finite volume discretizations for eigenvalue problems with applications to electronic structure calculations. Multiscale Model Simul, 2011, 9: 208-240 CrossRef Google Scholar

[67] Dai X, Yang Z, Zhou A. Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions. Sci China Ser A, 2008, 51: 1401-1414 CrossRef Google Scholar

[68] Fang J, Gao X, Zhou A. A symmetry-based decomposition approach to eigenvalue problems. J Sci Comput, 2013, 57: 638-669 CrossRef Google Scholar

[69] Dai X, Gong X, Zhou A, et al. A parallel orbital-updating approach for electronic structure calculations. arXiv1405.0260. 2014. Google Scholar

[70] Dai X, Liu Z, Zhou A. A parallel orbital-updating based optimization method for electronic structure calculations. arXiv:1510.07230. 2015. Google Scholar

[71] Dai X, Liu Z, Zhou A. A conjugate gradient optimization method for electronic structure calculations. arXiv:1601.07676. 2016. Google Scholar

[72] Zhang X, Zhu J, Wen Z, et al. Gradient type optimization methods for electronic structure calculations. SIAM J Sci Comput, 2014, 36: C265-C289 CrossRef Google Scholar

[73] Dai X, Shen L, Zhou A. A local computational scheme for higher order finite element eigenvalue approximations. Inter J Numer Anal Model, 2008, 5: 570-589. Google Scholar

[74] Dai X, Zhou A. Three-scale finite element discretizations for quantum eigenvalue problems. SIAM J Numer Anal, 2008, 46: 295-324 CrossRef Google Scholar

[75] Chen H, Liu F, Zhou A. A two-scale higher order finite element discretization for Schrödinger equations. J Comput Math, 2009, 27: 315-337. Google Scholar

[76] Gao X, Liu F, Zhou A. Three-scale finite element eigenvalue discretizations. BIT Numer Math, 2008, 48: 533-562 CrossRef Google Scholar

[77] Cascon J M, Kreuzer C, Nochetto R H, et al. Quasi-optimal convergence rate for an adaptive finite element method. SIAM J Numer Anal, 2008, 46: 2524-2550 CrossRef Google Scholar

[78] Chen H, He L, Zhou A. Finite element approximations of nonlinear eigenvalue problems in quantum physics. Comput Methods Appl Mech Engrg, 2011, 200: 1846-1865 CrossRef Google Scholar

[79] Dai X, Xu J, Zhou A. Convergence and optimal complexity of adaptive finite element eigenvalue computations. Numer Math, 2008, 110: 313-355 CrossRef Google Scholar

[80] D{\" o}rfler W. A convergent adaptive algorithm for Poisson's equation. SIAM J Numer Anal, 1996, 33: 1106-1124 CrossRef Google Scholar

[81] Garau E M, Morin P. Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems. IMA J Numer Anal, 2011, 31: 914-946 CrossRef Google Scholar

[82] Garau E M, Morin P, Zuppa C. Convergence of adaptive finite element methods for eigenvalue problems. M$^3$AS, 2009, 19: 721-747. Google Scholar

[83] Mao D, Shen L, Zhou A. Adaptive finite algorithms for eigenvalue problems based on local averaging type a posteriori error estimates. Adv Comput Math, 2006, 25: 135-160 CrossRef Google Scholar

[84] Yan N, Zhou A. Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes. Comput Methods Appl Mech Engrg, 2001, 190: 4289-4299 CrossRef Google Scholar

[85] Zienkiewicz O C, Zhu J Z. The superconvergence patch recovery and a posteriori error estimates. Internat. J Numer Methods Engrg, 1992, 33: 1331-1382 CrossRef Google Scholar