References
[1]
Hohenberg
P,
Kohn
W.
Inhomogeneous electron gas.
Phys Rev,
1964, 136: B864-B871
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Inhomogeneous electron gas&author=Hohenberg P&author=Kohn W&publication_year=1964&journal=Phys Rev&volume=136&pages=B864-B871
[2]
Kohn
W,
Sham
L J.
Self-consistent equations including exchange and correlation effects.
Phys Rev A,
1965, 140: 1133-1138
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Self-consistent equations including exchange and correlation effects&author=Kohn W&author=Sham L J&publication_year=1965&journal=Phys Rev A&volume=140&pages=1133-1138
[3]
Zhou A. Some open mathematical problems in electronic structure models and calculations. Sci China Math, 2015, 45: 929-938 [周爱辉. 电子结构模型与计算的若干数学问题. 中国科学: 数学, 2015, 45: 929-938].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou A. Some open mathematical problems in electronic structure models and calculations. Sci China Math, 2015, 45: 929-938 [周爱辉. 电子结构模型与计算的若干数学问题. 中国科学: 数学, 2015, 45: 929-938]&
[4]
Beck
T L.
Real-space mesh techniques in density-function theory.
Rev Mod Phys,
2000, 72: 1041-1080
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Real-space mesh techniques in density-function theory&author=Beck T L&publication_year=2000&journal=Rev Mod Phys&volume=72&pages=1041-1080
[5]
Dai X, Zhou A. Finite element methods for electronic structure calculations. Sci China Chem, 2015, 45: 800-811 [戴小英, 周爱辉. 电子结构计算的有限元方法. 中国科学: 化学, 2015, 45: 800-811].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dai X, Zhou A. Finite element methods for electronic structure calculations. Sci China Chem, 2015, 45: 800-811 [戴小英, 周爱辉. 电子结构计算的有限元方法. 中国科学: 化学, 2015, 45: 800-811]&
[6]
Torsti T, Eirola T, Enkovaara J, et al. Three real-space discretization techniques in electronic structure calculations. Phys Stat Sol, 2006, B243: 1016-1053.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Torsti T, Eirola T, Enkovaara J, et al. Three real-space discretization techniques in electronic structure calculations. Phys Stat Sol, 2006, B243: 1016-1053&
[7]
Chen H. Finite dimension approximations in density functional theory. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2010 [陈华杰. 密度泛函理论的有限维逼近. 博士学位论文. 北京: 中国科学院研究生院, 2010].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen H. Finite dimension approximations in density functional theory. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2010 [陈华杰. 密度泛函理论的有限维逼近. 博士学位论文. 北京: 中国科学院研究生院, 2010]&
[8]
Dai X. Adaptive and localization based finite element discretizations for the first-principles electronic structure calculation. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2008 [戴小英. 第一原理电子结构计算的有限元自适应及局部算法研究. 博士学位论文. 北京: 中国科学院研究生院, 2008].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dai X. Adaptive and localization based finite element discretizations for the first-principles electronic structure calculation. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2008 [戴小英. 第一原理电子结构计算的有限元自适应及局部算法研究. 博士学位论文. 北京: 中国科学院研究生院, 2008]&
[9]
Fang J. Algorithm study for real-space first-principles calculations. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2013 [方俊. 第一原理计算的若干实空间算法研究. 博士学位论文. 北京: 中国科学院研究生院, 2013].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fang J. Algorithm study for real-space first-principles calculations. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2013 [方俊. 第一原理计算的若干实空间算法研究. 博士学位论文. 北京: 中国科学院研究生院, 2013]&
[10]
Gao X. Hexahedral finite element methods for the first-principles electronic structure calculations. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2009 [高兴誉. 第一原理计算的若干实空间算法研究. 博士学位论文. 北京: 中国科学院研究生院, 2009].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gao X. Hexahedral finite element methods for the first-principles electronic structure calculations. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2009 [高兴誉. 第一原理计算的若干实空间算法研究. 博士学位论文. 北京: 中国科学院研究生院, 2009]&
[11]
He L. Study of the first-principles electronic structure calculations: numerical analysis and numerical simulation. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2012 [何连花. 第一原理电子结构计算研究: 数值分析与数值模拟. 博士学位论文. 北京: 中国科学院研究生院, 2012].
Google Scholar
http://scholar.google.com/scholar_lookup?title=He L. Study of the first-principles electronic structure calculations: numerical analysis and numerical simulation. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2012 [何连花. 第一原理电子结构计算研究: 数值分析与数值模拟. 博士学位论文. 北京: 中国科学院研究生院, 2012]&
[12]
Liu F. The first-principles studies: two-scale finite element discretizations and the calculations of ideal strength. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2006 [刘芳. 第一原理计算研究: 双尺度有限元组合离散与理想强度分析. 博士学位论文. 北京: 中国科学院研究生院, 2006].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu F. The first-principles studies: two-scale finite element discretizations and the calculations of ideal strength. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2006 [刘芳. 第一原理计算研究: 双尺度有限元组合离散与理想强度分析. 博士学位论文. 北京: 中国科学院研究生院, 2006]&
[13]
Shen L. Parallel adaptive finite element algorithms for electronic structure computing based on density functional theory. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2005 [沈丽华. 基于密度泛函理论的电子结构有限元并行自适应算法. 博士学位论文. 北京: 中国科学院研究生院, 2005].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shen L. Parallel adaptive finite element algorithms for electronic structure computing based on density functional theory. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2005 [沈丽华. 基于密度泛函理论的电子结构有限元并行自适应算法. 博士学位论文. 北京: 中国科学院研究生院, 2005]&
[14]
Yang Z. Finite volume discretization based first-principles electronic structure calculations. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2011 [杨章. 基于有限体积离散的第一原理电子结构计算. 博士学位论文. 北京: 中国科学院研究生院, 2011].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yang Z. Finite volume discretization based first-principles electronic structure calculations. Dissertation for Ph.D. Degree. Beijing: Graduate University of Chinese Academy of Sciences, 2011 [杨章. 基于有限体积离散的第一原理电子结构计算. 博士学位论文. 北京: 中国科学院研究生院, 2011]&
[15]
Zhang D. The application of finite element method in electronic structure calculations. Dissertation for Ph.D. Degree. Shanghai: Fudan University, 2007 [张笛儿. 有限元方法在电子结构计算中的应用. 上海: 复旦大学, 2007].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang D. The application of finite element method in electronic structure calculations. Dissertation for Ph.D. Degree. Shanghai: Fudan University, 2007 [张笛儿. 有限元方法在电子结构计算中的应用. 上海: 复旦大学, 2007]&
[16]
Zhang X. Algorithm study for real-space ground and excited states in first-principles calculations. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2015 [张昕. 第一原理基态与激发态实空间算法和模型研究. 博士学位论文. 北京: 中国科学院大学, 2015].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang X. Algorithm study for real-space ground and excited states in first-principles calculations. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2015 [张昕. 第一原理基态与激发态实空间算法和模型研究. 博士学位论文. 北京: 中国科学院大学, 2015]&
[17]
Zhu J. First-principles calculations based on mean-field model and strongly correlated theory. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2014 [朱金伟. 基于平均场模型与强关联理论的第一原理计算. 博士学位论文. 北京: 中国科学院大学, 2014].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhu J. First-principles calculations based on mean-field model and strongly correlated theory. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2014 [朱金伟. 基于平均场模型与强关联理论的第一原理计算. 博士学位论文. 北京: 中国科学院大学, 2014]&
[18]
Dirac P A M. The Principles of Quantum Mechanics. 4th ed. Oxford: Oxford University Press, 1988.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dirac P A M. The Principles of Quantum Mechanics. 4th ed. Oxford: Oxford University Press, 1988&
[19]
Fermi E. Un metodo statistics per la determinazione di alcune proprieta dell'atomoi. Rend Accad Lincei, 1927, 6: 602-607.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fermi E. Un metodo statistics per la determinazione di alcune proprieta dell'atomoi. Rend Accad Lincei, 1927, 6: 602-607&
[20]
Fermi
E.
A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements.
Zeit Fur Physik,
1928, 48: 73-79
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A statistical method for the determination of some atomic properties and the application of this method to the theory of the periodic system of elements&author=Fermi E&publication_year=1928&journal=Zeit Fur Physik&volume=48&pages=73-79
[21]
Thomas
L H.
The calculation of atomic fields.
Proc Cambridge Phil Soc,
1927, 23: 542-548
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The calculation of atomic fields&author=Thomas L H&publication_year=1927&journal=Proc Cambridge Phil Soc&volume=23&pages=542-548
[22]
Zhou
A.
Hohenberg-Kohn theorem for Coulomb type systems and its generalization.
J Math Chem,
2012, 50: 2746-2754
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hohenberg-Kohn theorem for Coulomb type systems and its generalization&author=Zhou A&publication_year=2012&journal=J Math Chem&volume=50&pages=2746-2754
[23]
Zhou A. Mathematical Model of Electronic Structure. Lecture Notes for Graduate University of Chinese Academy of Sciences, 2010 [周爱辉. 电子结构的数学模型. 中国科学院研究生院讲义, 2010].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhou A. Mathematical Model of Electronic Structure. Lecture Notes for Graduate University of Chinese Academy of Sciences, 2010 [周爱辉. 电子结构的数学模型. 中国科学院研究生院讲义, 2010]&
[24]
Agmon S. Lectures on the Exponential Decay of Solutions of Second-Order Elliptic Operators. Princeton: Princeton University Press, 1981.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Agmon S. Lectures on the Exponential Decay of Solutions of Second-Order Elliptic Operators. Princeton: Princeton University Press, 1981&
[25]
G{å}rding
L.
On the essential spectrum of Schrödinger operators.
J Funct Anal,
1983, 52: 1-10
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=On the essential spectrum of Schrödinger operators&author=G{å}rding L&publication_year=1983&journal=J Funct Anal&volume=52&pages=1-10
[26]
Simon
B.
Schrödinger operators in the twentieth century.
J Math Phys,
2000, 41: 3523-3555
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Schrödinger operators in the twentieth century&author=Simon B&publication_year=2000&journal=J Math Phys&volume=41&pages=3523-3555
[27]
Zhang X, Zhou A. A Singularity-based eigenfunction decomposition for Kohn-Sham quations. Sci Sin Math, 2016, 59: 1623-1634.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang X, Zhou A. A Singularity-based eigenfunction decomposition for Kohn-Sham quations. Sci Sin Math, 2016, 59: 1623-1634&
[28]
Adams R A. Sobolev Spaces. New York: Academic Press, 1975.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adams R A. Sobolev Spaces. New York: Academic Press, 1975&
[29]
Wang L H, Xu X J. The Mathematical Theory of Finite Element Methods. Beijing: Science Press, 2004 [王烈衡, 许学军. 有限元方法的数学基础. 北京: 科学出版社, 2004].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wang L H, Xu X J. The Mathematical Theory of Finite Element Methods. Beijing: Science Press, 2004 [王烈衡, 许学军. 有限元方法的数学基础. 北京: 科学出版社, 2004]&
[30]
Almbladh C O, von Barth U. Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. Phys Rev B, 1985, 31: 3231-3244.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Almbladh C O, von Barth U. Exact results for the charge and spin densities, exchange-correlation potentials, and density-functional eigenvalues. Phys Rev B, 1985, 31: 3231-3244&
[31]
Fattebert J L, Nardelli M B. Finite Difference Methods in Ab Initio Electronic Structure and Quantum Transport Calculations of Nanostructures. In: Handbook of Numerical Analysis. Amsterdam: Elsevier, 2003.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Fattebert J L, Nardelli M B. Finite Difference Methods in Ab Initio Electronic Structure and Quantum Transport Calculations of Nanostructures. In: Handbook of Numerical Analysis. Amsterdam: Elsevier, 2003&
[32]
Fattebert
J L,
Hornung
R D,
Wissink
A M.
Finite element approach for density functional theory calculations on locally-refined meshes.
J Comput Phys,
2007, 223: 759-773
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite element approach for density functional theory calculations on locally-refined meshes&author=Fattebert J L&author=Hornung R D&author=Wissink A M&publication_year=2007&journal=J Comput Phys&volume=223&pages=759-773
[33]
Martin R M. Electronic Structure: Basic Theory and Practical Methods. Cambridge: Cambridge University Press, 2004.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Martin R M. Electronic Structure: Basic Theory and Practical Methods. Cambridge: Cambridge University Press, 2004&
[34]
Xie X D, Lu D. Energy Band Theory of Solids. Shanghai: Fudan Univetsity Press, 1998 [谢希德, 陆栋. 固体能带理论. 上海: 复旦大学出版设, 1998].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Xie X D, Lu D. Energy Band Theory of Solids. Shanghai: Fudan Univetsity Press, 1998 [谢希德, 陆栋. 固体能带理论. 上海: 复旦大学出版设, 1998]&
[35]
He
L,
Liu
F,
Hautier
G, et al.
Accuracy of generalized gradient approximation functionals for density functional perturbation theory calculations.
Phys Rev B,
2014, 89: 064305-064320
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Accuracy of generalized gradient approximation functionals for density functional perturbation theory calculations&author=He L&author=Liu F&author=Hautier G&publication_year=2014&journal=Phys Rev B&volume=89&pages=064305-064320
[36]
Slater
J C.
A simpification of the Hartree-Fock method.
Phys Rev,
1951, 81: 385-390
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A simpification of the Hartree-Fock method&author=Slater J C&publication_year=1951&journal=Phys Rev&volume=81&pages=385-390
[37]
Ceperley
D M,
Alder
B J.
Ground state of the electron gas by a stochastic method.
Phys Rev Lett,
1980, 45: 566-569
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ground state of the electron gas by a stochastic method&author=Ceperley D M&author=Alder B J&publication_year=1980&journal=Phys Rev Lett&volume=45&pages=566-569
[38]
Perdew
J P,
Wang
Y.
Accurate and simple analytic representation of the electron-gas correlation energy.
Phys Rev B,
1992, 45: 13244-13249
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Accurate and simple analytic representation of the electron-gas correlation energy&author=Perdew J P&author=Wang Y&publication_year=1992&journal=Phys Rev B&volume=45&pages=13244-13249
[39]
Perdew
J P,
Zunger
A.
Self-interaction correction to density-functional approximations for many-electron.
Phys Rev B,
1981, 23: 5048-5079
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Self-interaction correction to density-functional approximations for many-electron&author=Perdew J P&author=Zunger A&publication_year=1981&journal=Phys Rev B&volume=23&pages=5048-5079
[40]
Vosko
S H,
Wilk
L,
Nusair
M.
Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis.
Can J Phys,
1980, 58: 1200-1211
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis&author=Vosko S H&author=Wilk L&author=Nusair M&publication_year=1980&journal=Can J Phys&volume=58&pages=1200-1211
[41]
Hamann
D R,
Schlüter
M,
Chiang
C.
Norm-conserving pseudopotentials.
Phys Rev Lett,
1979, 43: 1494-1497
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Norm-conserving pseudopotentials&author=Hamann D R&author=Schlüter M&author=Chiang C&publication_year=1979&journal=Phys Rev Lett&volume=43&pages=1494-1497
[42]
Troullier
N,
Martins
J L.
Efficient pseudopotentials for plane-wave calculations.
Phys Rev B,
1991, 43: 1993-2006
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient pseudopotentials for plane-wave calculations&author=Troullier N&author=Martins J L&publication_year=1991&journal=Phys Rev B&volume=43&pages=1993-2006
[43]
Blöchl
P E.
Generalized separable potentials for electronic-structure calculations.
Phys Rev B,
1990, 41: 5414-5416
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Generalized separable potentials for electronic-structure calculations&author=Blöchl P E&publication_year=1990&journal=Phys Rev B&volume=41&pages=5414-5416
[44]
Vanderbilt
D.
Soft self-consistent pseudopotentials in a generalized eigenvalue formalism.
Phys Rev B,
1990, 41: 7892-7895
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Soft self-consistent pseudopotentials in a generalized eigenvalue formalism&author=Vanderbilt D&publication_year=1990&journal=Phys Rev B&volume=41&pages=7892-7895
[45]
Kleinman
L,
Bylander
D M.
Efficacious form for model pseudopotentials.
Phys Rev Lett,
1982, 48: 1425-1428
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficacious form for model pseudopotentials&author=Kleinman L&author=Bylander D M&publication_year=1982&journal=Phys Rev Lett&volume=48&pages=1425-1428
[46]
Johnson
D D.
Modified Broyden's method for accelerating convergence in self-consistent calculations.
Phys Rev B,
1988, 38: 12807-12813
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Modified Broyden's method for accelerating convergence in self-consistent calculations&author=Johnson D D&publication_year=1988&journal=Phys Rev B&volume=38&pages=12807-12813
[47]
Anderson
D G.
Iterative procedures for nonlinear integral equations.
J Assoc Comput Mach,
1965, 12: 547-560
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Iterative procedures for nonlinear integral equations&author=Anderson D G&publication_year=1965&journal=J Assoc Comput Mach&volume=12&pages=547-560
[48]
Pulay P. Convergence acceleration of iterative sequences. the case of scf iteration. Chem Phys Lett, 1980, 73: 393-398.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Pulay P. Convergence acceleration of iterative sequences. the case of scf iteration. Chem Phys Lett, 1980, 73: 393-398&
[49]
Pulay
P.
Improved SCF convergence acceleration.
J Comput Chem,
1982, 3: 556-560
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Improved SCF convergence acceleration&author=Pulay P&publication_year=1982&journal=J Comput Chem&volume=3&pages=556-560
[50]
Yuan Y X, Sun W Y. Optimization Theory and Methods. Beijing: Science Press, 1997 [袁亚湘, 孙文瑜. 最优化理论与方法. 北京: 科学出版社, 1997].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Yuan Y X, Sun W Y. Optimization Theory and Methods. Beijing: Science Press, 1997 [袁亚湘, 孙文瑜. 最优化理论与方法. 北京: 科学出版社, 1997]&
[51]
Singh
D,
Krakauer
H,
Wang
C S.
Accelerating the convergence of self-consistent linearized augmented-plane-wave calculations.
Phys Rev B,
1986, 34: 8391-8393
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Accelerating the convergence of self-consistent linearized augmented-plane-wave calculations&author=Singh D&author=Krakauer H&author=Wang C S&publication_year=1986&journal=Phys Rev B&volume=34&pages=8391-8393
[52]
Srivastava
G P.
Broyden's method for self-consistent field convergence acceleration.
J Phys A,
1984, 17: 317-321
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Broyden's method for self-consistent field convergence acceleration&author=Srivastava G P&publication_year=1984&journal=J Phys A&volume=17&pages=317-321
[53]
Saad Y. Iterative Methods for Sparse Linear Systems. 2nd ed. Society for Industrial and Applied Mathematics, 2003.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Saad Y. Iterative Methods for Sparse Linear Systems. 2nd ed. Society for Industrial and Applied Mathematics, 2003&
[54]
Brandt
A.
Multilevel adaptative solutions to boundary-value problems.
Math Comput,
1977, 31: 333-390
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Multilevel adaptative solutions to boundary-value problems&author=Brandt A&publication_year=1977&journal=Math Comput&volume=31&pages=333-390
[55]
Strakhovskaya
L.
An iterative method for evaluating the first eigenvalue of an elliptic operator.
USSR Comput Math Math Phys,
1977, 17: 88-101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An iterative method for evaluating the first eigenvalue of an elliptic operator&author=Strakhovskaya L&publication_year=1977&journal=USSR Comput Math Math Phys&volume=17&pages=88-101
[56]
Saad Y. Numerical Methods for Large Eigenvalue Problems. New York: Halstead Press, 1992.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Saad Y. Numerical Methods for Large Eigenvalue Problems. New York: Halstead Press, 1992&
[57]
Calvetti D, Reichel L, Sorensen D C. An implicitly restarted Lanczos method for large symmetric eigenvalue problems. Electron Trans Numer Anal, 1994, 2: 1-21.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Calvetti D, Reichel L, Sorensen D C. An implicitly restarted Lanczos method for large symmetric eigenvalue problems. Electron Trans Numer Anal, 1994, 2: 1-21&
[58]
Knyazev
A V.
Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method.
SIAM J Sci Comput,
2001, 23: 517-541
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Toward the optimal preconditioned eigensolver: Locally optimal block preconditioned conjugate gradient method&author=Knyazev A V&publication_year=2001&journal=SIAM J Sci Comput&volume=23&pages=517-541
[59]
Dai X, Gao X, Zhou A. An introduction to the Davidson type method and its implementation. J Numer Methods Comput Appl, 2006, 27: 218-240 [戴小英, 高兴誉, 周爱辉. 特征值问题的Davidson型方法及其实现技术. 数值计算与计算机应用, 2006, 27: 218-240].
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dai X, Gao X, Zhou A. An introduction to the Davidson type method and its implementation. J Numer Methods Comput Appl, 2006, 27: 218-240 [戴小英, 高兴誉, 周爱辉. 特征值问题的Davidson型方法及其实现技术. 数值计算与计算机应用, 2006, 27: 218-240]&
[60]
Sleijpen
G L G,
van
der Vorst H A.
A Jacobi-Davidson iteration method for linear eigenvalue problems.
SIAM J Matrix Anal Appl,
1996, 17: 401-425
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Jacobi-Davidson iteration method for linear eigenvalue problems&author=Sleijpen G L G&author=van der Vorst H A&publication_year=1996&journal=SIAM J Matrix Anal Appl&volume=17&pages=401-425
[61]
Chen
H,
Dai
X,
Gong
X, et al.
Adaptive finite element approximations for {K}ohn-{S}ham models.
Multiscale Model Simul,
2014, 12: 1828-1869
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive finite element approximations for {K}ohn-{S}ham models&author=Chen H&author=Dai X&author=Gong X&publication_year=2014&journal=Multiscale Model Simul&volume=12&pages=1828-1869
[62]
Chen
H,
Gong
X,
He
L, et al.
Adaptive finite element approximations for a class of nonlinear eigenvalue problems in quantum physics.
Adv Appl Math Mech,
2011, 3: 493-518
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive finite element approximations for a class of nonlinear eigenvalue problems in quantum physics&author=Chen H&author=Gong X&author=He L&publication_year=2011&journal=Adv Appl Math Mech&volume=3&pages=493-518
[63]
Fang
J,
Gao
X,
Zhou
A.
A Kohn-Sham equation solver based on hexahedral finite elements.
J Comput Phys,
2012, 231: 3166-3180
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A Kohn-Sham equation solver based on hexahedral finite elements&author=Fang J&author=Gao X&author=Zhou A&publication_year=2012&journal=J Comput Phys&volume=231&pages=3166-3180
[64]
Shen
L,
Zhou
A.
A defect correction scheme for finite element eigenvalues with applications to quantum chemistry.
SIAM J Sci Comput,
2006, 28: 321-338
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A defect correction scheme for finite element eigenvalues with applications to quantum chemistry&author=Shen L&author=Zhou A&publication_year=2006&journal=SIAM J Sci Comput&volume=28&pages=321-338
[65]
Zhang
D,
Shen
L,
Zhou
A, et al.
Finite element method for solving {K}ohn-{S}ham equations based on self-adaptive tetrahedral mesh.
Phys Lett A,
2008, 372: 5071-5076
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite element method for solving {K}ohn-{S}ham equations based on self-adaptive tetrahedral mesh&author=Zhang D&author=Shen L&author=Zhou A&publication_year=2008&journal=Phys Lett A&volume=372&pages=5071-5076
[66]
Dai
X,
Gong
X,
Yang
Z, et al.
Finite volume discretizations for eigenvalue problems with applications to electronic structure calculations.
Multiscale Model Simul,
2011, 9: 208-240
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite volume discretizations for eigenvalue problems with applications to electronic structure calculations&author=Dai X&author=Gong X&author=Yang Z&publication_year=2011&journal=Multiscale Model Simul&volume=9&pages=208-240
[67]
Dai
X,
Yang
Z,
Zhou
A.
Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions.
Sci China Ser A,
2008, 51: 1401-1414
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Symmetric finite volume schemes for eigenvalue problems in arbitrary dimensions&author=Dai X&author=Yang Z&author=Zhou A&publication_year=2008&journal=Sci China Ser A&volume=51&pages=1401-1414
[68]
Fang
J,
Gao
X,
Zhou
A.
A symmetry-based decomposition approach to eigenvalue problems.
J Sci Comput,
2013, 57: 638-669
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A symmetry-based decomposition approach to eigenvalue problems&author=Fang J&author=Gao X&author=Zhou A&publication_year=2013&journal=J Sci Comput&volume=57&pages=638-669
[69]
Dai X, Gong X, Zhou A, et al. A parallel orbital-updating approach for electronic structure calculations. arXiv1405.0260. 2014.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dai X, Gong X, Zhou A, et al. A parallel orbital-updating approach for electronic structure calculations. arXiv1405.0260. 2014&
[70]
Dai X, Liu Z, Zhou A. A parallel orbital-updating based optimization method for electronic structure calculations. arXiv:1510.07230. 2015.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dai X, Liu Z, Zhou A. A parallel orbital-updating based optimization method for electronic structure calculations. arXiv:1510.07230. 2015&
[71]
Dai X, Liu Z, Zhou A. A conjugate gradient optimization method for electronic structure calculations. arXiv:1601.07676. 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dai X, Liu Z, Zhou A. A conjugate gradient optimization method for electronic structure calculations. arXiv:1601.07676. 2016&
[72]
Zhang
X,
Zhu
J,
Wen
Z, et al.
Gradient type optimization methods for electronic structure calculations.
SIAM J Sci Comput,
2014, 36: C265-C289
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gradient type optimization methods for electronic structure calculations&author=Zhang X&author=Zhu J&author=Wen Z&publication_year=2014&journal=SIAM J Sci Comput&volume=36&pages=C265-C289
[73]
Dai X, Shen L, Zhou A. A local computational scheme for higher order finite element eigenvalue approximations. Inter J Numer Anal Model, 2008, 5: 570-589.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dai X, Shen L, Zhou A. A local computational scheme for higher order finite element eigenvalue approximations. Inter J Numer Anal Model, 2008, 5: 570-589&
[74]
Dai
X,
Zhou
A.
Three-scale finite element discretizations for quantum eigenvalue problems.
SIAM J Numer Anal,
2008, 46: 295-324
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-scale finite element discretizations for quantum eigenvalue problems&author=Dai X&author=Zhou A&publication_year=2008&journal=SIAM J Numer Anal&volume=46&pages=295-324
[75]
Chen H, Liu F, Zhou A. A two-scale higher order finite element discretization for Schrödinger equations. J Comput Math, 2009, 27: 315-337.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Chen H, Liu F, Zhou A. A two-scale higher order finite element discretization for Schrödinger equations. J Comput Math, 2009, 27: 315-337&
[76]
Gao
X,
Liu
F,
Zhou
A.
Three-scale finite element eigenvalue discretizations.
BIT Numer Math,
2008, 48: 533-562
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Three-scale finite element eigenvalue discretizations&author=Gao X&author=Liu F&author=Zhou A&publication_year=2008&journal=BIT Numer Math&volume=48&pages=533-562
[77]
Cascon
J M,
Kreuzer
C,
Nochetto
R H, et al.
Quasi-optimal convergence rate for an adaptive finite element method.
SIAM J Numer Anal,
2008, 46: 2524-2550
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quasi-optimal convergence rate for an adaptive finite element method&author=Cascon J M&author=Kreuzer C&author=Nochetto R H&publication_year=2008&journal=SIAM J Numer Anal&volume=46&pages=2524-2550
[78]
Chen
H,
He
L,
Zhou
A.
Finite element approximations of nonlinear eigenvalue problems in quantum physics.
Comput Methods Appl Mech Engrg,
2011, 200: 1846-1865
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Finite element approximations of nonlinear eigenvalue problems in quantum physics&author=Chen H&author=He L&author=Zhou A&publication_year=2011&journal=Comput Methods Appl Mech Engrg&volume=200&pages=1846-1865
[79]
Dai
X,
Xu
J,
Zhou
A.
Convergence and optimal complexity of adaptive finite element eigenvalue computations.
Numer Math,
2008, 110: 313-355
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Convergence and optimal complexity of adaptive finite element eigenvalue computations&author=Dai X&author=Xu J&author=Zhou A&publication_year=2008&journal=Numer Math&volume=110&pages=313-355
[80]
D{\"
o}rfler W.
A convergent adaptive algorithm for Poisson's equation.
SIAM J Numer Anal,
1996, 33: 1106-1124
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A convergent adaptive algorithm for Poisson's equation&author=D{\" o}rfler W&publication_year=1996&journal=SIAM J Numer Anal&volume=33&pages=1106-1124
[81]
Garau
E M,
Morin
P.
Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems.
IMA J Numer Anal,
2011, 31: 914-946
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems&author=Garau E M&author=Morin P&publication_year=2011&journal=IMA J Numer Anal&volume=31&pages=914-946
[82]
Garau E M, Morin P, Zuppa C. Convergence of adaptive finite element methods for eigenvalue problems. M$^3$AS, 2009, 19: 721-747.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Garau E M, Morin P, Zuppa C. Convergence of adaptive finite element methods for eigenvalue problems. M$^3$AS, 2009, 19: 721-747&
[83]
Mao
D,
Shen
L,
Zhou
A.
Adaptive finite algorithms for eigenvalue problems based on local averaging type a posteriori error estimates.
Adv Comput Math,
2006, 25: 135-160
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Adaptive finite algorithms for eigenvalue problems based on local averaging type a posteriori error estimates&author=Mao D&author=Shen L&author=Zhou A&publication_year=2006&journal=Adv Comput Math&volume=25&pages=135-160
[84]
Yan
N,
Zhou
A.
Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes.
Comput Methods Appl Mech Engrg,
2001, 190: 4289-4299
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Gradient recovery type a posteriori error estimates for finite element approximations on irregular meshes&author=Yan N&author=Zhou A&publication_year=2001&journal=Comput Methods Appl Mech Engrg&volume=190&pages=4289-4299
[85]
Zienkiewicz
O C,
Zhu
J Z.
The superconvergence patch recovery and a posteriori error estimates.
Internat. J Numer Methods Engrg,
1992, 33: 1331-1382
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The superconvergence patch recovery and a posteriori error estimates&author=Zienkiewicz O C&author=Zhu J Z&publication_year=1992&journal=Internat. J Numer Methods Engrg&volume=33&pages=1331-1382