logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 10 : 1411-1420(2016) https://doi.org/10.1360/N112016-00074

An adaptive AMG preconditioning strategy for solving large-scale sparse linear systems

More info
  • ReceivedMar 20, 2016
  • AcceptedJul 7, 2016
  • PublishedOct 25, 2016

Abstract


Funded by

国家重点基础研究发展计划(973)

(2011CB309702)

国家自然科学基金(61370067)

国家自然科学基金(91430218)

国家自然科学基金(91530324)


References

[1] Brandt A, McCormick S, Ruge J. Algebraic multigrid for sparse matrix equations. In: Sparsity and its Application. Cambridge: Cambridge University Press, 1984. 257-284. Google Scholar

[2] Ruge J W, Stueben K. Algebraic multigrid. In: Multigrid Methods. Philadelphia: SIAM, 1987. 73-130. Google Scholar

[3] Stueben K. Algebraic Multigrid (AMG): An Introduction With Applications. Sankt Augustin: GMD-Forschungszentrum Informationstechnik, 1999. Google Scholar

[4] Yang U M. Parallel algebraic multigrid methods-high performance preconditioners. In: Numerical Solution of Partial Differential Equations on Parallel Computers. Berlin: Springer-Verlag, 2006. 209-236. Google Scholar

[5] Xu X W, Mo Z Y. Scalability analysis for parallel algebraic multigrid algorithms. Chinese J Comput Phys, 2007, 24: 387-394 [徐小文, 莫则尧. 并行代数多重网格算法可扩展性能分析. 计算物理, 2007, 24: 387-394]. Google Scholar

[6] Mo Z Y, Xu X W. Relaxed RS0 or CLJP coarsening strategy for parallel AMG methods. Parall Comput, 2007, 33: 174-185 CrossRef Google Scholar

[7] Baker A H, Gamblin T, Schulz M, et al. Challenges of scaling AMG across modern multicore architectures. In: Proceedings of the 25th IEEE International Symposium on Parallel and Distributed Processing (IPDPS), Anchorage, 2011. 275-286. Google Scholar

[8] Baker A H, Falgout R D, Gamblin T, et al. Scaling AMG solvers: on the road to Exascale. In: Proceedings of International Conference on Competence in High Performance Computing, Schwetzingen, 2010. 215-226. Google Scholar

[9] Baker A H, Falgout R D, Gahvari H, et al. Preparing Algebraic Multigrid for Exascale. LLNL Technical Report LLNL-TR-533076. 2012. Google Scholar

[10] Falgout R, Schroder J. Non-Galerkin coarse grids for algebraic multigrid. SIAM J Sci Comput, 2014, 36: 309-334 CrossRef Google Scholar

[11] Park J, Smelyanskiy M, Yang U M, et al. High-performance algebraic multigrid solver optimized for multi-core based distributed parallel systems. In: Proceedings of International Conference for High Performance Computing, Networking, Storage and Analysis (SC'15). New York: ACM, 2015. 54. Google Scholar

[12] Benzi M. Preconditioning techniques for large linear systems: a survey. J Comput Phys, 2002, 182: 418-477 CrossRef Google Scholar

[13] Gu T X, Xu X W, Liu X P, et al. Iterative Methods and Preconditioning Techniques. Beijing: Science Press, 2015 [谷同祥, 徐小文, 刘兴平, 等. 迭代方法和预处理技术(下册). 北京: 科学出版社, 2015]. Google Scholar

[14] Saad Y. Iterative Methods for Sparse Linear Systems. 2nd ed. Philadelphia: Society for Industry and Applied Mathematics, 2003. Google Scholar

[15] Meijerink J A, van der Vorst H A. An iterative solution method for linear systems of which the coefficient matrix is a symmetric M-matrix. Math Comput, 1977, 31: 148-162. Google Scholar

[16] Trottenberg U, Oosterlee C W, Schuller A. Multigrid. London: Academic Press, 2001. Google Scholar

[17] Toselli A, Widlund O. Domain Decomposition Methods: Algorithms and Theory. Philadelphia: Society for Industry and Applied Mathematics, 2004. Google Scholar

[18] Mo Z Y, Zhang A Q, Cao X L, et al. JASMIN: a parallel software infrastructure for scientific computing. Front Comput Sci China, 2010, 4: 480-488 CrossRef Google Scholar

[19] Pei W B. The construction of simulation algorithm for laser fusion. Commun Comput Phys, 2007, 2: 255-270. Google Scholar

[20] Pei W B, Zhu S P. Scientific computing for laser fusion. Physics, 2009, 38: 559-568 [裴文兵, 朱少平. 激光聚变中的科学计算. 物理, 2009, 38: 559-568]. Google Scholar

[21] An H B, Mo Z Y, Xu X W, et al. On choosing a nonlinear initial iterate for solving the 2-D 3-T heat conduction equations. J Comput Phys, 2009, 228: 3268-3287 CrossRef Google Scholar

[22] Baldwin C, Brown P, Falgout R, et al. Iterative linear solvers in 2D radiation-hydrodynamics code: methods and performance. J Comput Phys, 1999, 154: 1-40 CrossRef Google Scholar

[23] Xu X W, Mo Z Y, An H B. Algebraic two-level iterative method for 2D-3T radiation diffusion equations. Chinese J Comput Phys, 2009, 26: 1-8 [徐小文, 莫则尧, 安恒斌. 求解二维三温辐射扩散方程组的一种代数两层网 格迭代方法. 计算物理, 2009, 26: 1-8]. Google Scholar

[24] Zhou Z Y, Xu X W, Shu S, et al. An adaptive two-level preconditioner for 2D-3T radiation diffusion equations. Chinese J Comput Phys, 2012, 29: 475-483 [周志阳, 徐小文, 舒适, 等. 二维三温辐射扩散方程两层预条件子的自适应求解. 计算物理, 2012, 29: 475-483]. Google Scholar

[25] Yue X Q, Shu S, Xu X W, et al. An adaptive combined preconditioner with applications in radiation diffusion equations. Commun Comput Phys, 2015, 18: 1313-1335 CrossRef Google Scholar

[26] Fan Z F, Xu X W, Sun W J, et al. Radiation hydrodynamic instabilities simulation code LARED-S. In: Proceedings of the 16th National Conference on Numeical Methods for Hydrodynamic, Kunming, 2013. 25-26 [范征锋, 徐小文, 孙文俊, 等. 辐射流体界面不稳定性模拟程序LARED-S. 见: 第十六届全国流体力学数值方法研讨会论文集, 昆明, 2013. 25-26]. Google Scholar

[27] Zhang W Y, Ye W H, Wu J F, et al. Hydrodynamic instabilities of laser indirect-drive inertial-confinement-fusion implosion. Sci Sin-Phys Mech Astron, 2014, 44: 1-23 [张维岩, 叶文华, 吴俊峰, 等. 激光间接驱动聚变內爆流体不稳定性研究. 中国科学: 物理学 力学 天文学, 2014, 44: 1-23]. Google Scholar

[28] Fan Z F, Zhu S P, Pei W B, et al. Numerical inverstigation on the stabilization of the deceleration phase Rayleigh-Taylor instability due to alpha particle heating in ignition target. Euro Phys Lett, 2012, 99: 5003. Google Scholar

[29] Henson V E, Yang U M. BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl Numer Math, 2002, 41: 155-177 CrossRef Google Scholar

[30] Xu X W, Mo Z Y, Wu L P. Analysis of communication-to-computation based on asymptotic size for iterative methods. Chinese J Comput, 2013, 36: 782-789 [徐小文, 莫则尧, 武林平. 迭代方法中基于渐近规模的通信与计算比分析. 计算机学报, 2013, 36: 782-789]. Google Scholar