References
[1]
Viti
L,
Coquillat
D,
Politano
A, et al.
Plasma-wave terahertz detection mediated by topological insulators surface states.
Nano Lett,
2016, 16: 80-87
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Plasma-wave terahertz detection mediated by topological insulators surface states&author=Viti L&author=Coquillat D&author=Politano A&publication_year=2016&journal=Nano Lett&volume=16&pages=80-87
[2]
Cai
X H,
Sushkov
A B,
Jadidi
M M, et al.
Plasmon-enhanced terahertz photodetection in graphene.
Nano Lett,
2015, 15: 4295-4302
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Plasmon-enhanced terahertz photodetection in graphene&author=Cai X H&author=Sushkov A B&author=Jadidi M M&publication_year=2015&journal=Nano Lett&volume=15&pages=4295-4302
[3]
Titova
L V,
Pint
C L,
Zhang
Q, et al.
Generation of terahertz radiation by optical excitation of aligned carbon nanotubes.
Nano Lett,
2015, 15: 3267-3272
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Generation of terahertz radiation by optical excitation of aligned carbon nanotubes&author=Titova L V&author=Pint C L&author=Zhang Q&publication_year=2015&journal=Nano Lett&volume=15&pages=3267-3272
[4]
Vicarelli
L,
Vitiello
M S,
Coquillat
D, et al.
Graphene field-effect transistors as room-temperature terahertz detectors.
Nature Mater,
2012, 11: 865-871
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Graphene field-effect transistors as room-temperature terahertz detectors&author=Vicarelli L&author=Vitiello M S&author=Coquillat D&publication_year=2012&journal=Nature Mater&volume=11&pages=865-871
[5]
Prechtel L, Song L, Schuh D, et al. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nature Commun, 2012, 3: 646.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Prechtel L, Song L, Schuh D, et al. Time-resolved ultrafast photocurrents and terahertz generation in freely suspended graphene. Nature Commun, 2012, 3: 646&
[6]
Zak A, Andersson M A, Bauer M, et al. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene. Nano Lett, 2014, 14: 5834-5838.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zak A, Andersson M A, Bauer M, et al. Antenna-integrated 0.6 THz FET direct detectors based on CVD graphene. Nano Lett, 2014, 14: 5834-5838&
[7]
Berry
C W,
Wang
N,
Hashemi
M R, et al.
Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes.
Nature Commun,
2013, 4: 1622-5838
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes&author=Berry C W&author=Wang N&author=Hashemi M R&publication_year=2013&journal=Nature Commun&volume=4&pages=1622-5838
[8]
He
X W,
Fujimura
N,
Lloyd
J M, et al.
Carbon nanotube terahertz detector.
Nano Lett,
2014, 14: 3953-3958
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon nanotube terahertz detector&author=He X W&author=Fujimura N&author=Lloyd J M&publication_year=2014&journal=Nano Lett&volume=14&pages=3953-3958
[9]
Yan
J,
Kim
M H,
Elle
J A, et al.
Dual-gated bilayer graphene hot-electron bolometer.
Nature Nanotech,
2012, 7: 472-478
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dual-gated bilayer graphene hot-electron bolometer&author=Yan J&author=Kim M H&author=Elle J A&publication_year=2012&journal=Nature Nanotech&volume=7&pages=472-478
[10]
Di
Pietro P,
Ortolani
M,
Limaj
O, et al.
Observation of dirac plasmons in a topological insulator.
Nature Nanotech,
2013, 8: 556-560
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Observation of dirac plasmons in a topological insulator&author=Di Pietro P&author=Ortolani M&author=Limaj O&publication_year=2013&journal=Nature Nanotech&volume=8&pages=556-560
[11]
Cai
X,
Sushkov
A B,
Suess
R J, et al.
Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene.
Nature Nanotech,
2014, 9: 814-819
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene&author=Cai X&author=Sushkov A B&author=Suess R J&publication_year=2014&journal=Nature Nanotech&volume=9&pages=814-819
[12]
Koppens
F H L,
Mueller
T,
Avouris
P, et al.
Photodetectors based on graphene, other two-dimensional materials and hybrid systems.
Nature Nanotech,
2014, 9: 780-793
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Photodetectors based on graphene, other two-dimensional materials and hybrid systems&author=Koppens F H L&author=Mueller T&author=Avouris P&publication_year=2014&journal=Nature Nanotech&volume=9&pages=780-793
[13]
Tong
J Y,
Muthee
M,
Chen
S Y, et al.
Antenna enhanced graphene THz emitter and detector.
Nano Lett,
2015, 15: 5295-5301
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Antenna enhanced graphene THz emitter and detector&author=Tong J Y&author=Muthee M&author=Chen S Y&publication_year=2015&journal=Nano Lett&volume=15&pages=5295-5301
[14]
Viti
L,
Hu
J,
Coquillat
D, et al.
Black phosphorus terahertz photodetectors.
Adv Mater,
2015, 27: 5567-5572
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Black phosphorus terahertz photodetectors&author=Viti L&author=Hu J&author=Coquillat D&publication_year=2015&journal=Adv Mater&volume=27&pages=5567-5572
[15]
Vitiello
M S,
Coquillat
D,
Viti
L, et al.
Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors.
Nano Lett,
2012, 12: 96-101
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors&author=Vitiello M S&author=Coquillat D&author=Viti L&publication_year=2012&journal=Nano Lett&volume=12&pages=96-101
[16]
Rinzan
M,
Jenkins
G,
Drew
H D, et al.
Carbon nanotube quantum dots as highly sensitive terahertz-cooled spectrometers.
Nano Lett,
2012, 12: 3097-3100
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Carbon nanotube quantum dots as highly sensitive terahertz-cooled spectrometers&author=Rinzan M&author=Jenkins G&author=Drew H D&publication_year=2012&journal=Nano Lett&volume=12&pages=3097-3100
[17]
Sirtori
C,
Barbieri
S,
Colombelli
R.
Wave engineering with THz quantum cascade lasers.
Nature Photon,
2013, 7: 691-701
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Wave engineering with THz quantum cascade lasers&author=Sirtori C&author=Barbieri S&author=Colombelli R&publication_year=2013&journal=Nature Photon&volume=7&pages=691-701
[18]
Burghoff
D,
Kao
T Y,
Han
N R, et al.
Terahertz laser frequency combs.
Nature Photon,
2014, 8: 462-467
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Terahertz laser frequency combs&author=Burghoff D&author=Kao T Y&author=Han N R&publication_year=2014&journal=Nature Photon&volume=8&pages=462-467
[19]
Xu
G Y,
Colombelli
R,
Khanna
S P, et al.
Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures.
Nature Commun,
2012, 3: 952-467
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Efficient power extraction in surface-emitting semiconductor lasers using graded photonic heterostructures&author=Xu G Y&author=Colombelli R&author=Khanna S P&publication_year=2012&journal=Nature Commun&volume=3&pages=952-467
[20]
Rosch M, Scalari G, Beck M, et al. Octave-spanning semiconductor laser. Nature Photon, 2015, 9: 42-47.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rosch M, Scalari G, Beck M, et al. Octave-spanning semiconductor laser. Nature Photon, 2015, 9: 42-47&
[21]
Geiser
M,
Castellano
F,
Scalari
G, et al.
Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells.
Phys Rev Lett,
2012, 108: 106402-47
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrastrong coupling regime and plasmon polaritons in parabolic semiconductor quantum wells&author=Geiser M&author=Castellano F&author=Scalari G&publication_year=2012&journal=Phys Rev Lett&volume=108&pages=106402-47
[22]
Scalari
G,
Maissen
C,
Turcinkova
D, et al.
Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial.
Science,
2012, 335: 1323-1326
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ultrastrong coupling of the cyclotron transition of a 2D electron gas to a THz metamaterial&author=Scalari G&author=Maissen C&author=Turcinkova D&publication_year=2012&journal=Science&volume=335&pages=1323-1326
[23]
Mahler L, Tredicucci A, Beltram F, et al. Quasi-periodic distributed feedback laser. Nature Photon, 2010, 4: 165-169.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mahler L, Tredicucci A, Beltram F, et al. Quasi-periodic distributed feedback laser. Nature Photon, 2010, 4: 165-169&
[24]
Vijayraghavan K, Jiang Y F, Jang M, et al. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers. Nature Commun, 2013, 4: 2021.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vijayraghavan K, Jiang Y F, Jang M, et al. Broadly tunable terahertz generation in mid-infrared quantum cascade lasers. Nature Commun, 2013, 4: 2021&
[25]
Walther
C,
Scalari
G,
Amanti
M I, et al.
Microcavity laser oscillating in a circuit-based resonator.
Science,
2010, 327: 1495-1497
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Microcavity laser oscillating in a circuit-based resonator&author=Walther C&author=Scalari G&author=Amanti M I&publication_year=2010&journal=Science&volume=327&pages=1495-1497
[26]
Vitiello
M S,
Consolino
L,
Bartalini
S,
T
, et al.
Quantum-limited frequency fluctuations in a terahertz laser.
Nature Photon,
2012, 6: 525-528
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum-limited frequency fluctuations in a terahertz laser&author=Vitiello M S&author=Consolino L&author=Bartalini S&author=T &publication_year=2012&journal=Nature Photon&volume=6&pages=525-528
[27]
Zanotto
S,
Mezzapesa
F P,
Bianco
F, et al.
Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption.
Nature Phys,
2014, 10: 830-834
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Perfect energy-feeding into strongly coupled systems and interferometric control of polariton absorption&author=Zanotto S&author=Mezzapesa F P&author=Bianco F&publication_year=2014&journal=Nature Phys&volume=10&pages=830-834
[28]
Barbieri S, Gellie P, Santarelli G, et al. Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser. Nature Photon, 2010, 4: 636-640.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Barbieri S, Gellie P, Santarelli G, et al. Phase-locking of a 2.7-THz quantum cascade laser to a mode-locked erbium-doped fibre laser. Nature Photon, 2010, 4: 636-640&
[29]
Consolino
L,
Taschin
A,
Bartolini
P, et al.
Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers.
Nature Commun,
2012, 3: 1040-640
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers&author=Consolino L&author=Taschin A&author=Bartolini P&publication_year=2012&journal=Nature Commun&volume=3&pages=1040-640
[30]
Barbieri
S,
Ravaro
M,
Gellie
P, et al.
Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis.
Nature Photon,
2011, 5: 306-313
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis&author=Barbieri S&author=Ravaro M&author=Gellie P&publication_year=2011&journal=Nature Photon&volume=5&pages=306-313
[31]
Vitiello
M S,
Nobile
M,
Ronzani
A, et al.
Photonic quasi-crystal terahertz lasers.
Nature Commun,
2014, 5: 5884-313
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Photonic quasi-crystal terahertz lasers&author=Vitiello M S&author=Nobile M&author=Ronzani A&publication_year=2014&journal=Nature Commun&volume=5&pages=5884-313
[32]
Lei
W,
Antoszewski
J,
Faraone
L.
Progress, challenges, and opportunities for HgCdTe infrared materials and detectors.
Appl Phys Rev,
2015, 2: 041303-313
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Progress, challenges, and opportunities for HgCdTe infrared materials and detectors&author=Lei W&author=Antoszewski J&author=Faraone L&publication_year=2015&journal=Appl Phys Rev&volume=2&pages=041303-313
[33]
Hall
D J,
Buckle
L,
Gordon
N T, et al.
High-performance long-wavelength HgCdTe infrared detectors grown on silicon substrates.
Appl Phys Lett,
2004, 85: 2113-2115
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High-performance long-wavelength HgCdTe infrared detectors grown on silicon substrates&author=Hall D J&author=Buckle L&author=Gordon N T&publication_year=2004&journal=Appl Phys Lett&volume=85&pages=2113-2115
[34]
Martyniuk
P,
Rogalski
A.
MWIR barrier detectors versus HgCdTe photodiodes.
Infrared Phys Tech,
2015, 70: 125-128
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=MWIR barrier detectors versus HgCdTe photodiodes&author=Martyniuk P&author=Rogalski A&publication_year=2015&journal=Infrared Phys Tech&volume=70&pages=125-128
[35]
Hu
W D,
Ye
Z H,
Liao
L, et al.
128 x 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk.
Opt Lett,
2014, 39: 5184-5187
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=128 x 128 long-wavelength/mid-wavelength two-color HgCdTe infrared focal plane array detector with ultralow spectral cross talk&author=Hu W D&author=Ye Z H&author=Liao L&publication_year=2014&journal=Opt Lett&volume=39&pages=5184-5187
[36]
Boieriu
P,
Grein
C H,
Velicu
S, et al.
Effects of hydrogen on majority carrier transport and minority carrier lifetimes in long wavelength infrared HgCdTe on Si.
Appl Phys Lett,
2006, 88: 062106-5187
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Effects of hydrogen on majority carrier transport and minority carrier lifetimes in long wavelength infrared HgCdTe on Si&author=Boieriu P&author=Grein C H&author=Velicu S&publication_year=2006&journal=Appl Phys Lett&volume=88&pages=062106-5187
[37]
Jozwikowska
A,
Jozwikowski
K,
Antoszewski
J, et al.
Generation-recombination effects on dark currents in CdTe-passivated midwave infrared HgCdTe photodiodes.
J Appl Phys,
2005, 98: 014504-5187
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Generation-recombination effects on dark currents in CdTe-passivated midwave infrared HgCdTe photodiodes&author=Jozwikowska A&author=Jozwikowski K&author=Antoszewski J&publication_year=2005&journal=J Appl Phys&volume=98&pages=014504-5187
[38]
Jozwikowski
K,
Kopytko
M,
Rogalski
A, et al.
Enhanced numerical analysis of current-voltage characteristics of long wavelength infrared n-on-p HgCdTe photodiodes.
J Appl Phys,
2010, 108: 074519-5187
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhanced numerical analysis of current-voltage characteristics of long wavelength infrared n-on-p HgCdTe photodiodes&author=Jozwikowski K&author=Kopytko M&author=Rogalski A&publication_year=2010&journal=J Appl Phys&volume=108&pages=074519-5187
[39]
Qiu
W C,
Hu
W D,
Lin
T, et al.
Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope.
Appl Phys Lett,
2014, 105: 191106-5187
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope&author=Qiu W C&author=Hu W D&author=Lin T&publication_year=2014&journal=Appl Phys Lett&volume=105&pages=191106-5187
[40]
Qiu
W C,
Hu
W D,
Chen
L, et al.
Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes.
IEEE Trans Electron Dev,
2015, 62: 1926-1931
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes&author=Qiu W C&author=Hu W D&author=Chen L&publication_year=2015&journal=IEEE Trans Electron Dev&volume=62&pages=1926-1931
[41]
Hu W D, Chen X S, Ye Z H, et al. Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays. IEEE J Sel Topics Quantum Electron, 2013, 19: 4100107.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hu W D, Chen X S, Ye Z H, et al. Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays. IEEE J Sel Topics Quantum Electron, 2013, 19: 4100107&
[42]
Martyniuk
P,
Antoszewski
J,
Martyniuk
M, et al.
New concepts in infrared photodetector designs.
Appl Phys Rev,
2014, 1: 041102-1931
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=New concepts in infrared photodetector designs&author=Martyniuk P&author=Antoszewski J&author=Martyniuk M&publication_year=2014&journal=Appl Phys Rev&volume=1&pages=041102-1931
[43]
Zuo
D,
Qiao
P F,
Wasserman
D, et al.
Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control.
Appl Phys Lett,
2013, 102: 141107-1931
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Direct observation of minority carrier lifetime improvement in InAs/GaSb type-II superlattice photodiodes via interfacial layer control&author=Zuo D&author=Qiao P F&author=Wasserman D&publication_year=2013&journal=Appl Phys Lett&volume=102&pages=141107-1931
[44]
Lee
S J,
Ku
Z Y,
Barve
A, et al.
A monolithically integrated plasmonic infrared quantum dot camera.
Nature Commun,
2011, 2: 286-1931
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A monolithically integrated plasmonic infrared quantum dot camera&author=Lee S J&author=Ku Z Y&author=Barve A&publication_year=2011&journal=Nature Commun&volume=2&pages=286-1931
[45]
Stanley
R.
Plasmonics in the mid-infrared.
Nature Photon,
2012, 6: 409-411
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Plasmonics in the mid-infrared&author=Stanley R&publication_year=2012&journal=Nature Photon&volume=6&pages=409-411
[46]
Chang
C C,
Sharma
Y D,
Kim
Y S, et al.
A surface plasmon enhanced infrared photodetector based on InAs quantum dots.
Nano Lett,
2010, 10: 1704-1709
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A surface plasmon enhanced infrared photodetector based on InAs quantum dots&author=Chang C C&author=Sharma Y D&author=Kim Y S&publication_year=2010&journal=Nano Lett&volume=10&pages=1704-1709
[47]
Schuster
J,
Bellotti
E.
Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays.
Opt Express,
2013, 21: 14712-14727
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Numerical simulation of crosstalk in reduced pitch HgCdTe photon-trapping structure pixel arrays&author=Schuster J&author=Bellotti E&publication_year=2013&journal=Opt Express&volume=21&pages=14712-14727
[48]
Razeghi
M,
Nguyen
B M.
Advances in mid-infrared detection and imaging: a key issues review.
Rep Prog Phys,
2014, 77: 082401-14727
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Advances in mid-infrared detection and imaging: a key issues review&author=Razeghi M&author=Nguyen B M&publication_year=2014&journal=Rep Prog Phys&volume=77&pages=082401-14727
[49]
Chen
G X,
Haddadi
A,
Hoang
A M, et al.
Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application.
Opt Lett,
2015, 40: 45-47
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Demonstration of type-II superlattice MWIR minority carrier unipolar imager for high operation temperature application&author=Chen G X&author=Haddadi A&author=Hoang A M&publication_year=2015&journal=Opt Lett&volume=40&pages=45-47
[50]
Hoang
A M,
Chen
G,
Chevallier
R, et al.
High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection.
Appl Phys Lett,
2014, 104: 251105-47
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High performance photodiodes based on InAs/InAsSb type-II superlattices for very long wavelength infrared detection&author=Hoang A M&author=Chen G&author=Chevallier R&publication_year=2014&journal=Appl Phys Lett&volume=104&pages=251105-47
[51]
Tian
Z B,
Schuler-Sandy
T,
Krishna
S.
Electron barrier study of mid-wave infrared interband cascade photodetectors.
Appl Phys Lett,
2013, 103: 083501-47
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Electron barrier study of mid-wave infrared interband cascade photodetectors&author=Tian Z B&author=Schuler-Sandy T&author=Krishna S&publication_year=2013&journal=Appl Phys Lett&volume=103&pages=083501-47
[52]
DeCuir
E A,
Meissner
G P,
Wijewarnasuriya
P S, et al.
Long-wave type-II superlattice detectors with unipolar electron and hole barriers.
Opt Eng,
2012, 51: 124001-47
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Long-wave type-II superlattice detectors with unipolar electron and hole barriers&author=DeCuir E A&author=Meissner G P&author=Wijewarnasuriya P S&publication_year=2012&journal=Opt Eng&volume=51&pages=124001-47
[53]
Haddadi
A,
Ramezani-Darvish
S,
Chen
G X, et al.
High operability 1024$\times$1024 long wavelength type-II superlattice focal plane array.
IEEE J Quantum Electron,
2012, 48: 221-228
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High operability 1024$\times$1024 long wavelength type-II superlattice focal plane array&author=Haddadi A&author=Ramezani-Darvish S&author=Chen G X&publication_year=2012&journal=IEEE J Quantum Electron&volume=48&pages=221-228
[54]
Steenbergen
E H,
Connelly
B C,
Metcalfe
G D, et al.
Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb.
Appl Phys Lett,
2011, 99: 251110-228
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Significantly improved minority carrier lifetime observed in a long-wavelength infrared III-V type-II superlattice comprised of InAs/InAsSb&author=Steenbergen E H&author=Connelly B C&author=Metcalfe G D&publication_year=2011&journal=Appl Phys Lett&volume=99&pages=251110-228
[55]
Yang
R Q,
Tian
Z B,
Klem
J F, et al.
Interband cascade photovoltaic devices.
Appl Phys Lett,
2010, 96: 063504-228
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Interband cascade photovoltaic devices&author=Yang R Q&author=Tian Z B&author=Klem J F&publication_year=2010&journal=Appl Phys Lett&volume=96&pages=063504-228
[56]
Rogalski
A,
Antoszewski
J,
Faraone
L.
Third-generation infrared photodetector arrays.
J Appl Phys,
2009, 105: 091101-228
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Third-generation infrared photodetector arrays&author=Rogalski A&author=Antoszewski J&author=Faraone L&publication_year=2009&journal=J Appl Phys&volume=105&pages=091101-228
[57]
Ting
D Z Y,
Hill
C J,
Soibel
A, et al.
A high-performance long wavelength superlattice complementary barrier infrared detector.
Appl Phys Lett,
2009, 95: 023508-228
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A high-performance long wavelength superlattice complementary barrier infrared detector&author=Ting D Z Y&author=Hill C J&author=Soibel A&publication_year=2009&journal=Appl Phys Lett&volume=95&pages=023508-228
[58]
Kim
H S,
Plis
E,
Rodriguez
J B, et al.
Mid-IR focal plane array based on type-II InAs/GaSb strain layer superlattice detector with nBn design.
Appl Phys Lett,
2008, 92: 183502-228
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mid-IR focal plane array based on type-II InAs/GaSb strain layer superlattice detector with nBn design&author=Kim H S&author=Plis E&author=Rodriguez J B&publication_year=2008&journal=Appl Phys Lett&volume=92&pages=183502-228
[59]
Mohseni
H,
Michel
E,
Sandoen
J, et al.
Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range.
Appl Phys Lett,
1997, 71: 1403-1405
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Growth and characterization of InAs/GaSb photoconductors for long wavelength infrared range&author=Mohseni H&author=Michel E&author=Sandoen J&publication_year=1997&journal=Appl Phys Lett&volume=71&pages=1403-1405
[60]
Youngdale
E R,
Meyer
J R,
Hoffman
C A, et al.
Auger lifetime enhancement in Inas-Ga1-Xinxsb superlattices.
Appl Phys Lett,
1994, 64: 3160-3162
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Auger lifetime enhancement in Inas-Ga1-Xinxsb superlattices&author=Youngdale E R&author=Meyer J R&author=Hoffman C A&publication_year=1994&journal=Appl Phys Lett&volume=64&pages=3160-3162
[61]
Smith
D L,
Mailhiot
C.
Proposal for strained type-II superlattice infrared detectors.
J Appl Phys,
1987, 62: 2545-2548
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Proposal for strained type-II superlattice infrared detectors&author=Smith D L&author=Mailhiot C&publication_year=1987&journal=J Appl Phys&volume=62&pages=2545-2548
[62]
Risacher
C,
Güsten
R,
Stutzki
J, et al.
First supra-THz heterodyne array receivers for astronomy with the SOFIA observatory.
IEEE Trans Terahertz Sci Tech,
2016, 6: 199-211
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=First supra-THz heterodyne array receivers for astronomy with the SOFIA observatory&author=Risacher C&author=Güsten R&author=Stutzki J&publication_year=2016&journal=IEEE Trans Terahertz Sci Tech&volume=6&pages=199-211
[63]
Dahlberg
K,
Kiuru
T,
Mallat
J, et al.
Mixer-based characterization of millimeter-wave and terahertz single-anode and antiparallel schottky diodes.
IEEE Trans Terahertz Sci Tech,
2014, 4: 552-559
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Mixer-based characterization of millimeter-wave and terahertz single-anode and antiparallel schottky diodes&author=Dahlberg K&author=Kiuru T&author=Mallat J&publication_year=2014&journal=IEEE Trans Terahertz Sci Tech&volume=4&pages=552-559
[64]
Grossman
E N,
Leong
K,
Mei
X B, et al.
Low-frequency noise and passive imaging with 670 GHz HEMT low-noise amplifiers.
IEEE Trans Terahertz Sci Tech,
2014, 4: 749-752
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Low-frequency noise and passive imaging with 670 GHz HEMT low-noise amplifiers&author=Grossman E N&author=Leong K&author=Mei X B&publication_year=2014&journal=IEEE Trans Terahertz Sci Tech&volume=4&pages=749-752
[65]
Seeds
A J,
Shams
H,
Fice
M J, et al.
TeraHertz photonics for wireless communications.
J Lightwave Tech,
2015, 33: 579-587
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=TeraHertz photonics for wireless communications&author=Seeds A J&author=Shams H&author=Fice M J&publication_year=2015&journal=J Lightwave Tech&volume=33&pages=579-587
[66]
Zamora
A,
Mei
G,
Leong
K M K H, et al.
A submillimeter wave InP HEMT multiplier chain.
IEEE Microw Wirel Comp Lett,
2015, 25: 591-593
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=A submillimeter wave InP HEMT multiplier chain&author=Zamora A&author=Mei G&author=Leong K M K H&publication_year=2015&journal=IEEE Microw Wirel Comp Lett&volume=25&pages=591-593
[67]
Samoska
L A.
An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime.
IEEE Trans Terahertz Sci Tech,
2011, 1: 9-24
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime&author=Samoska L A&publication_year=2011&journal=IEEE Trans Terahertz Sci Tech&volume=1&pages=9-24
[68]
Chattopadhyay
G.
Technology, capabilities, and performance of low power terahertz sources.
IEEE Trans Terahertz Sci Tech,
2011, 1: 33-53
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Technology, capabilities, and performance of low power terahertz sources&author=Chattopadhyay G&publication_year=2011&journal=IEEE Trans Terahertz Sci Tech&volume=1&pages=33-53
[69]
Antes J, Boes F, Meier D, et al. Ultra-wideband single-balanced transmitter-MMIC for 300 GHz communication systems. In: Proceedings of IEEE Mtt-S International Microwave Symposium (Ims), Tampa, 2014. 1-3.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Antes J, Boes F, Meier D, et al. Ultra-wideband single-balanced transmitter-MMIC for 300 GHz communication systems. In: Proceedings of IEEE Mtt-S International Microwave Symposium (Ims), Tampa, 2014. 1-3&
[70]
Siegel
P H.
Terahertz technology.
IEEE Trans Microw Theory Tech,
2002, 50: 910-928
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Terahertz technology&author=Siegel P H&publication_year=2002&journal=IEEE Trans Microw Theory Tech&volume=50&pages=910-928
[71]
Armstrong C M. The truth about terahertz. IEEE Spectrum, 2012, 49: 36-41.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Armstrong C M. The truth about terahertz. IEEE Spectrum, 2012, 49: 36-41&
[72]
Rosker M. Terahertz Device Characterization and Security Applications. In: Proceedings of MTT Terahertz Workshop. 2007.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Rosker M. Terahertz Device Characterization and Security Applications. In: Proceedings of MTT Terahertz Workshop. 2007&
[73]
Shur M. Terahertz technology: devices and applications. In: Proceedings of the 31st European Solid-State Device Research Conference, Grenoble, 2005. 13-21.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Shur M. Terahertz technology: devices and applications. In: Proceedings of the 31st European Solid-State Device Research Conference, Grenoble, 2005. 13-21&
[74]
Booske
J H,
Dobbs
R J,
Joye
C D, et al.
Vacuum electronic high power terahertz sources.
IEEE Trans Terahertz Sci Tech,
2011, 1: 54-75
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Vacuum electronic high power terahertz sources&author=Booske J H&author=Dobbs R J&author=Joye C D&publication_year=2011&journal=IEEE Trans Terahertz Sci Tech&volume=1&pages=54-75
[75]
Zhang Z. Research progress of THz traveling wave tubes. Laser Infrared, 2012, 42: 250-257.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Zhang Z. Research progress of THz traveling wave tubes. Laser Infrared, 2012, 42: 250-257&
[76]
Ryskin N M, Karetnikova T A, Rozhnev A G, et al. Development and modeling of a sheet-beam sub-THz traveling wave tube. In: Proceedings of IEEE International Vacuum Electronics Conference (IVEC), Beijing, 2015. 1-2.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Ryskin N M, Karetnikova T A, Rozhnev A G, et al. Development and modeling of a sheet-beam sub-THz traveling wave tube. In: Proceedings of IEEE International Vacuum Electronics Conference (IVEC), Beijing, 2015. 1-2&
[77]
Paoloni C, Carlo A D, Brunetti F, et al. Design and fabrication of a 1 THz backward wave amplifier. Terahertz Sci Tech, 2011, 4: 149-163.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Paoloni C, Carlo A D, Brunetti F, et al. Design and fabrication of a 1 THz backward wave amplifier. Terahertz Sci Tech, 2011, 4: 149-163&
[78]
Borisov A A, Budzinsky U A, Bykovsky S V, et al. The development of vacuum microwave devices in ISTOK. In: Proceedings of IEEE International Vacuum Electronics Conference, Bangalore, 2011. 437-438.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Borisov A A, Budzinsky U A, Bykovsky S V, et al. The development of vacuum microwave devices in ISTOK. In: Proceedings of IEEE International Vacuum Electronics Conference, Bangalore, 2011. 437-438&
[79]
Tucek J C, Basten M A, Gallagher D A, et al. 220 GHz power amplifier development at Northrop Grumman. In: Proceedings of the 15th International Vacuum Electronics Conference (IVEC), Monterey, 2014. 553-554.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tucek J C, Basten M A, Gallagher D A, et al. 220 GHz power amplifier development at Northrop Grumman. In: Proceedings of the 15th International Vacuum Electronics Conference (IVEC), Monterey, 2014. 553-554&
[80]
Liu W, Zhang Z, Zhao C, et al. Test of terahertz extended interaction oscillator. In: Proceedings of IEEE International Vacuum Electronics Conference (IVEC), Beijing, 2015. 1-2.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Liu W, Zhang Z, Zhao C, et al. Test of terahertz extended interaction oscillator. In: Proceedings of IEEE International Vacuum Electronics Conference (IVEC), Beijing, 2015. 1-2&
[81]
Hadfield R H, Johansson G. Superconducting Devices in Quantum Optics. Berlin: Springer, 2016.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hadfield R H, Johansson G. Superconducting Devices in Quantum Optics. Berlin: Springer, 2016&
[82]
Marsili F, Verma V B, Stern J A, et al. Detecting single infrared photons with 93{\.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Marsili F, Verma V B, Stern J A, et al. Detecting single infrared photons with 93{\&
[83]
Saglamyurek
E,
Jin
J,
Verma
V B, et al.
Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre.
Nature Photon,
2015, 9: 83-87
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre&author=Saglamyurek E&author=Jin J&author=Verma V B&publication_year=2015&journal=Nature Photon&volume=9&pages=83-87
[84]
Renema
J J,
Gaudio
R,
Wang
Q, et al.
Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector.
Phys Rev Lett,
2014, 112: 117604-87
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Experimental test of theories of the detection mechanism in a nanowire superconducting single photon detector&author=Renema J J&author=Gaudio R&author=Wang Q&publication_year=2014&journal=Phys Rev Lett&volume=112&pages=117604-87
[85]
Li
H,
Chen
S,
You
L, et al.
Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging.
Opt Express,
2016, 24: 3535-3542
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Superconducting nanowire single photon detector at 532 nm and demonstration in satellite laser ranging&author=Li H&author=Chen S&author=You L&publication_year=2016&journal=Opt Express&volume=24&pages=3535-3542
[86]
Yang
X Y,
Li
H,
Zhang
W J, et al.
Superconducting nanowire single photon detector with on-chip bandpass filter.
Opt Express,
2014, 22: 16267-16272
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Superconducting nanowire single photon detector with on-chip bandpass filter&author=Yang X Y&author=Li H&author=Zhang W J&publication_year=2014&journal=Opt Express&volume=22&pages=16267-16272
[87]
Baryshev
A,
Baselmans
J J A,
Freni
A, et al.
Progress in antenna coupled kinetic inductance detectors.
IEEE Trans Terahertz Sci Tech,
2011, 1: 112-123
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Progress in antenna coupled kinetic inductance detectors&author=Baryshev A&author=Baselmans J J A&author=Freni A&publication_year=2011&journal=IEEE Trans Terahertz Sci Tech&volume=1&pages=112-123
[88]
Shurakov
A,
Lobanov
Y,
Goltsman
G.
Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications.
Supercond Sci Tech,
2016, 29: 023001-123
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Superconducting hot-electron bolometer: from the discovery of hot-electron phenomena to practical applications&author=Shurakov A&author=Lobanov Y&author=Goltsman G&publication_year=2016&journal=Supercond Sci Tech&volume=29&pages=023001-123
[89]
Holland
W S,
Bintley
D,
Chapin
E L, et al.
SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell telescope.
Mon Not Royal Astron Soc,
2013, 430: 2513-2533
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=SCUBA-2: the 10 000 pixel bolometer camera on the James Clerk Maxwell telescope&author=Holland W S&author=Bintley D&author=Chapin E L&publication_year=2013&journal=Mon Not Royal Astron Soc&volume=430&pages=2513-2533
[90]
Zhang
W,
Khosropanah
P,
Gao
J R, et al.
Quantum noise in a terahertz hot electron bolometer mixer.
Appl Phys Lett,
2010, 96: 111113-2533
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Quantum noise in a terahertz hot electron bolometer mixer&author=Zhang W&author=Khosropanah P&author=Gao J R&publication_year=2010&journal=Appl Phys Lett&volume=96&pages=111113-2533
[91]
Megrant
A,
Neill
C,
Barends
R, et al.
Planar superconducting resonators with internal quality factors above one million.
Appl Phys Lett,
2012, 100: 113510-2533
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Planar superconducting resonators with internal quality factors above one million&author=Megrant A&author=Neill C&author=Barends R&publication_year=2012&journal=Appl Phys Lett&volume=100&pages=113510-2533
[92]
de Visser P J, Baselmans J J A, Bueno J, et al. Fluctuations in the electron system of a superconductor exposed to a photon flux. Nature Commun, 2014, 5: 3130.
Google Scholar
http://scholar.google.com/scholar_lookup?title=de Visser P J, Baselmans J J A, Bueno J, et al. Fluctuations in the electron system of a superconductor exposed to a photon flux. Nature Commun, 2014, 5: 3130&
[93]
Bakurskiy
S V,
Klenov
N V,
Soloviev
I I, et al.
Theoretical model of superconducting spintronic SIsFS devices.
Appl Phys Lett,
2013, 102: 192603-2533
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Theoretical model of superconducting spintronic SIsFS devices&author=Bakurskiy S V&author=Klenov N V&author=Soloviev I I&publication_year=2013&journal=Appl Phys Lett&volume=102&pages=192603-2533
[94]
Calkins
B,
Lita
A E,
Fox
A E, et al.
Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks.
Appl Phys Lett,
2011, 99: 241114-2533
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Faster recovery time of a hot-electron transition-edge sensor by use of normal metal heat-sinks&author=Calkins B&author=Lita A E&author=Fox A E&publication_year=2011&journal=Appl Phys Lett&volume=99&pages=241114-2533
[95]
Yates
S J C,
Baselmans
J J A,
Endo
A, et al.
Photon noise limited radiation detection with lens-antenna coupled microwave kinetic inductance detectors.
Appl Phys Lett,
2011, 99: 073505-2533
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Photon noise limited radiation detection with lens-antenna coupled microwave kinetic inductance detectors&author=Yates S J C&author=Baselmans J J A&author=Endo A&publication_year=2011&journal=Appl Phys Lett&volume=99&pages=073505-2533
[96]
Zheludev
N I.
The road ahead for metamaterials.
Science,
2010, 328: 582-583
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=The road ahead for metamaterials&author=Zheludev N I&publication_year=2010&journal=Science&volume=328&pages=582-583
[97]
Costantini
D,
Lefebvre
A,
Coutrot
A L, et al.
Plasmonic metasurface for directional and frequency-selective thermal emission.
Phys Rev Appl,
2015, 4: 014023-583
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Plasmonic metasurface for directional and frequency-selective thermal emission&author=Costantini D&author=Lefebvre A&author=Coutrot A L&publication_year=2015&journal=Phys Rev Appl&volume=4&pages=014023-583
[98]
Luo L, Chatzakis I, Wang J G, et al. Broadband terahertz generation from metamaterials. Nature Commun, 2014, 5: 3055.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Luo L, Chatzakis I, Wang J G, et al. Broadband terahertz generation from metamaterials. Nature Commun, 2014, 5: 3055&
[99]
Hao
J M,
Zhou
L,
Qiu
M.
Nearly total absorption of light and heat generation by plasmonic metamaterials.
Phys Rev B,
2011, 83: 165107-583
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Nearly total absorption of light and heat generation by plasmonic metamaterials&author=Hao J M&author=Zhou L&author=Qiu M&publication_year=2011&journal=Phys Rev B&volume=83&pages=165107-583
[100]
Hao
J M,
Wang
J,
Liu
X L, et al.
High performance optical absorber based on a plasmonic metamaterial.
Appl Phys Lett,
2010, 96: 251104-583
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High performance optical absorber based on a plasmonic metamaterial&author=Hao J M&author=Wang J&author=Liu X L&publication_year=2010&journal=Appl Phys Lett&volume=96&pages=251104-583
[101]
Hao J M, Yuan Y, Ran L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett, 2007, 99: 251104.
Google Scholar
http://scholar.google.com/scholar_lookup?title=Hao J M, Yuan Y, Ran L X, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials. Phys Rev Lett, 2007, 99: 251104&
[102]
Qu
C,
Ma
S J,
Hao
J M, et al.
Tailor the functionalities of metasurfaces based on a complete phase diagram.
Phys Rev Lett,
2015, 115: 235503-583
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tailor the functionalities of metasurfaces based on a complete phase diagram&author=Qu C&author=Ma S J&author=Hao J M&publication_year=2015&journal=Phys Rev Lett&volume=115&pages=235503-583
[103]
Liu
X L,
Tyler
T,
Starr
T, et al.
Taming the blackbody with infrared metamaterials as selective thermal emitters.
Phys Rev Lett,
2011, 107: 045901-583
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Taming the blackbody with infrared metamaterials as selective thermal emitters&author=Liu X L&author=Tyler T&author=Starr T&publication_year=2011&journal=Phys Rev Lett&volume=107&pages=045901-583
[104]
Argyropoulos
C,
Le
K Q,
Mattiucci
N, et al.
Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces.
Phys Rev B,
2013, 87: 205112-583
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Broadband absorbers and selective emitters based on plasmonic Brewster metasurfaces&author=Argyropoulos C&author=Le K Q&author=Mattiucci N&publication_year=2013&journal=Phys Rev B&volume=87&pages=205112-583
[105]
Schaich
W L,
Puscasu
I.
Tuning infrared emission from microstrip arrays.
Phys Rev B,
2012, 86: 245423-583
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Tuning infrared emission from microstrip arrays&author=Schaich W L&author=Puscasu I&publication_year=2012&journal=Phys Rev B&volume=86&pages=245423-583
[106]
Lu
D,
Kan
J J,
Fullerton
E E, et al.
Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials.
Nature Nanotech,
2014, 9: 48-53
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials&author=Lu D&author=Kan J J&author=Fullerton E E&publication_year=2014&journal=Nature Nanotech&volume=9&pages=48-53
[107]
Mattiucci
N,
D'Aguanno
G,
Alu
A, et al.
Taming the thermal emissivity of metals: a metamaterial approach.
Appl Phys Lett,
2012, 100: 201109-53
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Taming the thermal emissivity of metals: a metamaterial approach&author=Mattiucci N&author=D'Aguanno G&author=Alu A&publication_year=2012&journal=Appl Phys Lett&volume=100&pages=201109-53
[108]
Puscasu
I,
Schaich
W L.
Narrow-band, tunable infrared emission from arrays of microstrip patches.
Appl Phys Lett,
2008, 92: 233102-53
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Narrow-band, tunable infrared emission from arrays of microstrip patches&author=Puscasu I&author=Schaich W L&publication_year=2008&journal=Appl Phys Lett&volume=92&pages=233102-53
[109]
Brucoli
G,
Bouchon
P,
Haidar
R, et al.
High efficiency quasi-monochromatic infrared emitter.
Appl Phys Lett,
2014, 104: 081101-53
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=High efficiency quasi-monochromatic infrared emitter&author=Brucoli G&author=Bouchon P&author=Haidar R&publication_year=2014&journal=Appl Phys Lett&volume=104&pages=081101-53
[110]
Redding
B,
Liew
S F,
Sarma
R, et al.
Compact spectrometer based on a disordered photonic chip.
Nature Photon,
2013, 7: 746-751
CrossRef
Google Scholar
http://scholar.google.com/scholar_lookup?title=Compact spectrometer based on a disordered photonic chip&author=Redding B&author=Liew S F&author=Sarma R&publication_year=2013&journal=Nature Photon&volume=7&pages=746-751