logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 8 : 1086-1107(2016) https://doi.org/10.1360/N112016-00069

Millimeter wave and terahertz technology

More info
  • ReceivedMar 28, 2016
  • AcceptedJun 23, 2016

Abstract


Funded by

国家自然科学基金(61331006)

国家自然科学基金(61471118)

国家高技术研究发展计划(863计划)

(2015AA01A703)


References

[1] Liu S G. Recent development of terahertz science and technology. China Basic Sci, 2006, 8: 7-12 [刘盛纲. 太赫兹科学技术的新发展. 中国基础科学, 2006, 8: 7-12]. Google Scholar

[2] Yao J Q, Lu Y, Zhang B G, et al. New research progress of THz radiation. J Optoelectron Laser, 2005, 16: 503-510 [姚建铨, 路洋, 张百钢, 等. THz 辐射的研究和应用新进展. 光电子$\cdot$激光, 2005, 16: 503-510]. Google Scholar

[3] Siegel P H. Terahertz technology. IEEE Trans Microw Theory Tech, 2002, 50: 910-928 CrossRef Google Scholar

[4] Samoska L A. An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime. IEEE Trans Terahertz Sci Tech, 2011, 1: 9-24 CrossRef Google Scholar

[5] Leong K M K H, Mei X, Yoshida W, et al. A 0.85 THz low noise amplifier using InP HEMT transistors. IEEE Microw Wirel Compon Lett, 2015, 25: 397-399. Google Scholar

[6] Radisic V, Scott D W, Monier C, et al. InP HBT transferred substrate amplifiers operating to 600 GHz. In: Proceedings of IEEE MTT-S International Microwave Symposium, Phoenix, 2015. 1-3. Google Scholar

[7] Tessmann A, Leuther A, Massler H, et al. A high gain 600 GHz amplifier TMIC using 35 nm Metamorphic HEMT technology. In: Proceedings of IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, 2012. 1-4. Google Scholar

[8] Leuther A, Tessmann A, Doria P, et al. 20 nm Metamorphic HEMT technology for terahertz monolithic integrated circuits. In: Proceedings of the 9th European Microwave Integrated Circuit Conference (EuMIC), Rome, 2014. 84-87. Google Scholar

[9] Kolias N J. Recent advances in GaN MMIC technology. In: Proceedings of Custom Integrated Circuits Conference (CICC), San Jose, 2015. 1-5. Google Scholar

[10] Margomenos A, Kurdoghlian A, Micovic M, et al. GaN Technology for E, W and G-band applications. In: Proceedings of Compound Semiconductor Integrated Circuit Symposium (CSICs), La Jolla, 2014. 1-4. Google Scholar

[11] Yu X, Sun H, Xu Y, et al. C-band 60W GaN power amplifier MMIC designed with harmonic tuned approach. Electron Lett, 2016, 52: 219-221 CrossRef Google Scholar

[12] Yu X, Hong W, Wang W, et al. A millimeter wave 11W GaN MMIC power amplifier. In: Proceedings of the 3rd Asia-Pacific Conference on Antennas and Propagation (APCAP), Harbin, 2014. 1342-1344. Google Scholar

[13] Rucker H, Heinemann B, Fox A. Half-Terahertz SiGe BiCMOS technology. In: Proceedings of IEEE 12th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (SiRF), Santa Clara, 2012. 133-136. Google Scholar

[14] Seok E, Cao C, Shim D, et a1. A 410 GHz CMOS push-push oscillator with an on-chip patch antenna. In: Proceedings of IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco 2008. 472-473. Google Scholar

[15] Laskin E, Chevalier P, Chantre A, et a1. 165-GHz transceiver in SiGe technology. IEEE J Solid State Circ, 2008, 43: 1087-1100 CrossRef Google Scholar

[16] Nicolson S T, Tomkins A, Tang K W, et a1. A 1.2V 140GHz receiver with on-die antenna in 65nm CMOS. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium, Atlanta, 2008. 229-232. Google Scholar

[17] Seo M, Jagannathan B, Carta C, et al. A 1.1V 150GHz amplifier with 8dB gain and +6dBm saturated output power in standard digital 65rim CMOS using dummy-prefilled microstrip lines. In: Proceedings of IEEE International Solid-State Circuits Conference - Digest of Technical Papers, San Francisco, 2009. 484-485. Google Scholar

[18] Han R, Afshari E. A broadband 480-GHz passive frequency doubler in 65-nm bulk CMOS with 0.23mW output power. In: Proceedings of IEEE Radio Frequency Integrated Circuits Symposium(RFIC), Montreal, 2012. 203-206. Google Scholar

[19] Marcu C, Chowdhury D, Thakkar C, et al. A 90nm CMOS low-power 60GHz transceiver with integrated baseband circuitry. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 2009. 314-315. Google Scholar

[20] Lin F J, Brinkhoff J, Kang K, et al. A low power 60GHz OOK transceiver system in 90nm CMOSwith innovative on-chip AMC antenna. In: Proceedings of IEEE Asian Solid-State Circuits Conference (A-SSCC), Taipei, 2009. 349-352. Google Scholar

[21] Zhao Y, Chen Z Z, Virbila G, et al. 2.1 An integrated 0.56THz frequency synthesizer with 21GHz locking range and -74dBc/Hz phase noise at 1MHz offset in 65nm CMOS. In: Proceedings of IEEE International Solid-State Circuits Conference (ISSCC), San Francisco, 2016. 36-37. Google Scholar

[22] Ojefors E, Grzyb J, Zhao Y, et al. A 820GHz SiGe chipset for terahertz active imaging applications. In: Proceedings of IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), San Francisco, 2011. 224-226. Google Scholar

[23] Park J, Kang S, Niknejad A M. A 0.38 THz fully integrated transceiver utilizing a quadrature push-push harmonic circuitry in SiGe BiCMOS. IEEE J Solid-State Circ, 2012, 47: 2344-2354. Google Scholar

[24] Hong W, Chen J X, Yan P P, et al. Research advances in CMOS millimeter and submillimeter wave integrated circuits. J Microw, 2010, 26: 1-6 [洪伟, 陈继新, 严蘋蘋, 等. CMOS毫米波亚毫米波集成电路研究进展. 微波学报, 2010, 26: 1-6]. Google Scholar

[25] Chen J, Hong W, Tang H, et al. Silicon based millimeter wave and THz ICs. IEICE Trans Electron, 2012, 95: 1134-1140. Google Scholar

[26] 国家重点基础研究发展计划(973计划)项目. 硅基毫米波亚毫米波集成电路与系统的基础研究(2010CB327400)结题总结报告. 2014. Google Scholar

[27] Feng J J, Cai J, Wu X P, et al. W-band 100W pulsed TWT amplifier for power combining experiment. In: Proceedings of IEEE International Vacuum Electronics Conference, Monterey, 2014. 173-174. Google Scholar

[28] Pi Z, Khan F. An introduction to millimeter-wave mobile broadband systems. IEEE Commun Mag, 2011, 49: 101-107. Google Scholar

[29] Hossain E, Hasan M. 5G cellular: key enabling technologies and research challenges. IEEE Instrum Meas Mag, 2015, 18: 11-21. Google Scholar

[30] Marcu C, Chowdhury D, Thakkar C, et al. A 90nm CMOS low-power 60GHz transceiver with integrated baseband circuitry. IEEE J Solid-State Circ, 2009, 44: 3434-3447 CrossRef Google Scholar

[31] Saponara S, Neri B. Fully integrated 60 GHz transceiver for wireless HD/WiGig short-range multi-Gbit connections. In: Applications in Electronics Pervading Industry, Environment and Society. Berlin: Springer International Publishing, 2016. Google Scholar

[32] Siligaris A, Richard O, Martineau B, et al. A 65-nm CMOS fully integrated transceiver module for 60-GHz wireless HD applications. IEEE J Solid-State Circ, 2011, 46: 3005-3017 CrossRef Google Scholar

[33] Tomkins A, Poon A, Juntunen E, et al. A 60 GHz, 802.11ad/WiGig-Compliant transceiver for infrastructure and mobile applications in 130 nm SiGe BiCMOS. IEEE J Solid-State Circ, 2015, 50: 1-17. Google Scholar

[34] Taghivand M, Aggarwal K, Rajavi Y, et al. An energy harvesting 2X2 60 GHz transceiver with scalable data rate of 38-2450 Mb/s for near-range communication. IEEE J Solid-State Circ, 2015, 50: 1889-1902 CrossRef Google Scholar

[35] Okada K, Li N, Matsushita K, et al. A 60-GHz 16QAM/8PSK/QPSK/BPSK direct-Conversion transceiver for IEEE802. 15.3c. IEEE J Solid-State Circ, 2011, 46: 2988-3004 CrossRef Google Scholar

[36] Hong W, Wang H, Chen J, et al. Recent advances in Q-LINKPAN/IEEE 802.11aj (45GHz) millimeter wave communication technologies. In: Proceedings of IEEE Asia-Pacific Microwave Conference (APMC), Seoul, 2013. 227-229. Google Scholar

[37] Wang H, Hong W, Chen J, et al. IEEE 802.11aj (45GHz): a new very high throughput millimeter-wave WLAN system. China Commun, 2014, 11: 51-62. Google Scholar

[38] Zhu F, Hong W, Liang W F, et al. A low-power low-cost 45-GHz OOK transceiver system in 90-nm CMOS for multi-Gb/s transmission. IEEE Trans Microw Theory Tech, 2014, 62: 2105-2117 CrossRef Google Scholar

[39] Tanaka R. 30/20-GHz domestic satellite communication system in the public communication network of Japan: design and operation. Proc IEEE, 1984, 72: 1637-1644 CrossRef Google Scholar

[40] Cianca E, Rossi T, Yahalom A, et al. EHF for satellite communications: the new broadband frontier. Proc IEEE, 2011, 99: 1858-1881 CrossRef Google Scholar

[41] Rossi T, Cianca E, Lucente M, et al. Experimental Italian Q/V band satellite network. In: Proceedings of Aerospace Conference, Big Sky, 2009. 1-9. Google Scholar

[42] Cianca E, Stallo C, Lucente M, et al. TRANSPONDERS: effectiveness of propagation impairments mitigation techniques at Q/V band. In: Proceedings of IEEE GLOBECOM Workshops, New Orleans, 2008. 1-6. Google Scholar

[43] Ruggieri M, de Fina S, Pratesi M, et al. The W-Band data collection experiment of the DAVID mission. IEEE Trans Aerosp Electron Syst, 2002, 38: 1377-1387 CrossRef Google Scholar

[44] Lucente M, Rossi T, Jebril A, et al. Experimental missions in W-band: a small LEO satellite approach. IEEE Syst J, 2008, 2: 90-103 CrossRef Google Scholar

[45] Cooper A J. Fiber/radio for the provision of cordless/mobile telephony services in the access network. Electron Lett, 1990, 26: 2054-2056 CrossRef Google Scholar

[46] Beas J, Castanon G, Aldaya I, et al. Millimeter-wave frequency radio over fiber systems: a survey. IEEE Commun Surv Tutor, 2013, 15: 1593-1619 CrossRef Google Scholar

[47] Stohr A, Babiel S, Cannard P J, et al. Millimeter-wave photonic components for broadband wireless systems. IEEE Trans Microw Theory Tech, 2010, 58: 3071-3082 CrossRef Google Scholar

[48] Sambaraju R, Herrera J, Marti J, et al. Up to 40 Gb/s wireless signal generation and demodulation in 75-110 GHz band using photonic techniques. In: Proceedings of IEEE Topical Meeting on Microwave Photonics, Montreal, 2010. 1-4. Google Scholar

[49] Hirata A, Takahashi H, Yamaguchi R, et al. Transmission characteristics of 120-GHz-band wireless link using radio-on-fiber technologies. J Lightw Tech, 2008, 26: 2338-2344 CrossRef Google Scholar

[50] Kallfass I, Zwick T. High-speed wireless bridge at 220 GHz connecting two fiber-optic links each spanning up to 20 km. In: Proceedings of IEEE Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, 2012. 1-3. Google Scholar

[51] Song H J, Ajito K, Hirata A, et al. 8 Gbit/s wireless data transmission at 250 GHz. Electron Lett, 2009, 45: 1121-1122 CrossRef Google Scholar

[52] Mirth L, Pergande A, Eden D, et al. Passive millimeter-wave camera images: current and future. In: Proceedings of SPIE Conference on Passive Millimeter-Wave Imaging Technology, Orlando, 1999. 68-75. Google Scholar

[53] Kemp M C. Millimetre wave and terahertz technology for detection of concealed threats - a review. In: Proceedings of the 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, Cardiff, 2007. 647-648. Google Scholar

[54] Martin C A, Kolinko V G. Concealed weapons detection with an improved passive millimeter-wave imager. In: Proceedings of SPIE Radar Sensor Technology VIII and Passive Millimeter-Wave Imaging Technology VII, Orlando, 2004. 252-259. Google Scholar

[55] Dou W. Researches on millimeter wave Imaging in SKL of MMW at Nanjing, China. IEICE Trans Electron, 2005, 88: 1451-1457. Google Scholar

[56] Sheen D M, Mcmakin D L, Hall T E, et al. Active millimeter-wave standoff and portal imaging techniques for personnel screening. In: Proceedings of IEEE Conference on Technologies for Homeland Security, Boston, 2009. 440-447. Google Scholar

[57] Bertl S, Detlefsen J. Effects of a reflecting background on the results of active MMW SAR imaging of concealed objects. IEEE Trans Geosci Remote Sens, 2011, 49: 3745-3752 CrossRef Google Scholar

[58] Jain V, Tzeng F, Zhou L, et al. A single-chip dual-band 22-29-GHz/77-81-GHz BiCMOS transceiver for automotive radars. IEEE J Solid-State Circ, 2009, 44: 3469-3485 CrossRef Google Scholar

[59] Wenger J. Automotive radar - status and perspectives. In: Proceedings of IEEE Compound Semiconductor Integrated Circuit Symposium, Palm Springs, 2005. Google Scholar

[60] Hasch J, Topak E, Schnabel R, et al. Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Trans Microw Theory Tech, 2012, 60: 845-860 CrossRef Google Scholar

[61] Cui C, Kim S K, Song R, et al. A 77-GHz FMCW radar system using on-chip waveguide feeders in 65-nm CMOS. IEEE Trans Microw Theory Tech, 2015, 63: 1-11 CrossRef Google Scholar

[62] Sarabandi K, Park M. millimeter-wave radar phenomenology of power lines and a polarimetric detection algorithm. IEEE Trans Antenna Propag, 1999, 47: 1807-1813 CrossRef Google Scholar

[63] Appleby R, Coward P, Sandersreed J N. Evaluation of a passive millimeter-wave (PMMW) imager for wire detection in degraded visual conditions. In: Proceedings of SPIE - the International Society for Optical Engineering, Orlando, 2009. 7309. Google Scholar

[64] Sarabandi K, Park M. A radar cross-section model for power lines at millimeter-wave frequencies. IEEE Trans Antenna Propag, 2003, 51: 2353-2360 CrossRef Google Scholar

[65] Hobbs P V, Locatelli J D, Biswas K R, et al. Evaluation of a 35 GHz radar for cloud physics research. J Atmos Oceanic Tech, 1985, 2: 35-48 CrossRef Google Scholar

[66] Kollias P, Albrecht B. The turbulence structure in a continental stratocumulus cloud from millimeter-wavelength radar observations. J Atmos Sci, 2000, 57: 2417-2434 CrossRef Google Scholar

[67] Kollias P, Clothiaux E E, Miller M A, et al. Millimeter-wavelength radars: new frontier in atmospheric cloud and precipitation research. Bulletin American Meteorol Soc, 2007, 88: 1608-1624 CrossRef Google Scholar

[68] Xu C Y. The present state and development trend of foreign seeker technology. Guid Fuze, 2012, 33: 11-15 [徐春夷. 国外导引头技术现状及发展趋势. 制导与引信, 2012, 33: 11-15]. Google Scholar

[69] 祝彬. 国外毫米波雷达制导技术的发展状况. 中国航天, 2007, 40-43. Google Scholar

[70] Liang P L, Dai J M. Review of terahertz science and technology. Tech Autom Appl, 2015, 34: 1-8 [梁培龙, 戴景民. 太赫兹科学技术的综述. 自动化技术与应用, 2015, 34: 1-8]. Google Scholar

[71] Zhao G Z. Progress on terahertz science and technology. Foreign Electron Meas Tech, 2014, 33: 1-6 [赵国忠. 太赫兹科学技术研究的新进展. 国外电子测量技术, 2014, 33: 1-6]. Google Scholar

[72] Ma S Y. Broadband light Boba's utensils disinfection (cabinet). China Appl, 2012, 2012: 536-540 [马少云. 宽频光波巴氏食具消毒技术(柜). 电器, 2012, 2012: 536-540]. Google Scholar

[73] Hattori T, Tukamoto K, Nakatsuka H. Time-resolved study of intense terahertz pulses generated by a large-aperture photoconductive antenna. Japanese J Appl Phys, 2001, 40: 4907-4912 CrossRef Google Scholar

[74] Stone M R, Naftaly M, Miles R E, et al. Electrical and radiation characteristics of semilarge photoconductive terahertz emitters. IEEE Trans Microw Theory Tech, 2004, 52: 2420-2429 CrossRef Google Scholar

[75] Park S G, Jin K H, Yi M, et al. Enhancement of terahertz pulse emission by optical nanoantenna. Acs Nano, 2012, 6: 2026-2031 CrossRef Google Scholar

[76] Huang Z, Yu B, Zhao G Z. Study on Terahertz source of small aperture bow tie photoconductive antenna. Laser Infrared, 2009, 39: 183-186 [黄振, 于斌, 赵国忠, 等. 小孔径蝴蝶型光电导天线太赫兹辐射源的研究. 激光与红外, 2009, 39: 183-186]. Google Scholar

[77] Shao L, Lu G, Cheng D M. Generation and recent advances in optical rectification THz sources. Laser Infrared, 2008, 38: 872-875 [邵立, 路纲, 程东明. 光整流太赫兹源及其研究进展. 激光与红外, 2008, 38: 872-875]. Google Scholar

[78] Zhang X C, Ma X F, Jin Y, et al. Terahertz optical rectification from a nonlinear organic crystal. Appl Phys Lett, 1993, 61: 3080-3082. Google Scholar

[79] Tomasino A, Parisi A, Stivala S, et al. Wideband THz time domain spectroscopy based on optical rectification and electro-optic sampling. Sci Reports, 2013, 3: 3116. Google Scholar

[80] 李德华, 戚晓东, 刘盛纲. 光整流法产生THz辐射转化率的理论分析. 中国科学E辑: 技术科学, 2009, 39: 745-750. Google Scholar

[81] Huang S W, Granados E, Huang W R, et al. High conversion efficiency, high energy terahertz pulses by optical rectification in cryogenically cooled lithium niobate. Opt Lett, 2013, 38: 796-798 CrossRef Google Scholar

[82] Huang Z, de C P, Depoortere I, et al. Terahertz emission profile from laser-induced air plasma. Appl Phys Lett, 2006, 88: 261103-798 CrossRef Google Scholar

[83] Minami Y, Kurihara T, Yamaguchi K, et al. High-power THz wave generation in plasma induced by polarization adjusted two-color laser pulses. Appl Phys Lett, 2013, 102: 041105-798 CrossRef Google Scholar

[84] Weiss C, Wallenstein R, Beigang R. Magnetic-field-enhanced generation of terahertz radiation in semiconductor surfaces. Appl Phys Lett, 2000, 77: 4160-4162 CrossRef Google Scholar

[85] Gopakumar R, Ramanandan G K P, Adam A J L, et al. Enhanced terahertz emission by coherent optical absorption in ultrathin semiconductor films on metals. Optical Soc America, 2013, 21: 16784-16798. Google Scholar

[86] Wu X, Quan B, Xu X, et al. Effect of inhomogeneity and plasmons on terahertz radiation from GaAs (1 0 0) surface coated with rough Au film. Appl Surf Sci, 2013, 285: 853-857 CrossRef Google Scholar

[87] Huang D, Larocca T R, Chang M C F, et al. Terahertz CMOS frequency generator using linear superposition technique. IEEE J Solid-State Circ, 2008, 43: 2730-2738 CrossRef Google Scholar

[88] Razavi B. A 300-GHz fundamental oscillator in 65-nm CMOS technology. IEEE J Solid-State Circ, 2011, 46: 894-903 CrossRef Google Scholar

[89] Momeni O, Afshari E. High power Terahertz and millimeter-wave oscillator design: a systematic approach. IEEE J Solid-State Circ, 2011, 46: 583-597 CrossRef Google Scholar

[90] Steyaert W, Reynaert P. A 0.54 THz signal generator in 40 nm bulk CMOS with 22 GHz tuning range and integrated planar antenna. IEEE J Solid-State Circ, 2014, 49: 1617-1626. Google Scholar

[91] Hübers H W, Eichholz R, Pavlov S G, et al. High resolution terahertz spectroscopy with quantum cascade lasers. J Infrared Millimeter Terahertz Waves, 2013, 34: 325-341 CrossRef Google Scholar

[92] Kohler R, Tredicucci A, Beltram F, et al. Terahertz semiconductor-heterostructure laser. Nature, 2002, 417: 156-159 CrossRef Google Scholar

[93] Williams B S. Terahertz quantum-cascade lasers. Nature Photonics, 2007, 1: 517-525 CrossRef Google Scholar

[94] Mohan A, Wittmann A, Hugi A, et al. Room-temperature continuous-wave operation of an external-cavity quantum cascade laser. Opt Lett, 2007, 32: 2792-525 CrossRef Google Scholar

[95] Freund H P, Parker R K. 自由电子激光器. 科学(中文版), 1989, 34-40. Google Scholar

[96] Yang X F, Li M, Jin X, et al. Electron beam properties and lasing experiment of FEL. Chinese J Lasers, 2006, 33: 156-159 [杨兴繁, 黎明, 金晓, 等. 自由电子激光器电子束性能与出光. 中国激光, 2006, 33: 156-159]. Google Scholar

[97] Chang T Y, Bridges T J. Laser action at 452, 496, and 541 $\upmu$m in optically pumped CH$_{3}$F. Opt Commun, 1970, 1: 423-426 CrossRef Google Scholar

[98] Miao L, Zuo D L, Jiu Z X, et al. High energy optically pumped NH$_{3}$ terahertz laser with simple cavity. Chinese Opt Lett, 2010, 8: 411-413 CrossRef Google Scholar

[99] He Z, Zhang Y, Zhang H, et al. Study of optimal cavity parameter in optically pumped D$_{2}$O gas terahertz laser. J Infrared Millimeter Terahertz Waves, 2010, 31: 551-558. Google Scholar

[100] Huang X, Qin J, Zheng X, et al. Experimental study on miniature pulsed CH$_{3}$OH far-infrared laser. Int J Infrared Millimeter Waves, 1997, 18: 619-625 CrossRef Google Scholar

[101] Tochitsky S Y, Sung C, Trubnick S E, et al. High-power tunable, 0.5-3 THz radiation source based on nonlinear difference frequency mixing of CO$_{2}$ laser lines. J Opt Soc America B, 2007, 24: 2509-2516. Google Scholar

[102] Ding Y J. High-power tunable Terahertz sources based on parametric processes and applications. IEEE J Sel Topics Quantum Electron, 2007, 13: 705-720 CrossRef Google Scholar

[103] Lu Z Y. Research on tunable mid-infrared and terahertz generation with pulsed CO$_{2}$ laser. Dissertation for Ph.D. Degree. Wuhan: Huazhong University of Science & Technology, 2011 [卢彦兆. 基于CO$_{2}$激光的可调谐中红外及THz 差频产生技术研究. 博士学位论文. 武汉: 华中科技大学, 2011]. Google Scholar

[104] Kawase K, Shikata J, Minamide H, et al. Arrayed silicon prism coupler for a terahertz-wave parametric oscillator. Appl Opt, 2001, 40: 1423-1426 CrossRef Google Scholar

[105] Xu D G, Zhang H, Jiang H, et al. High energy Terahertz parametric oscillator based on surface-emitted configuration. Chinese Phys Lett, 2013, 30: 024212-1426 CrossRef Google Scholar

[106] Zhong R B. Study of Terahertz transmission lines.Dissertation for Ph.D. Degree. Cheng Du: University of Electronic Science and Technology of China, 2012 [钟任斌. 太赫兹传输线研究. 博士学位论文. 成都: 电子科技大学, 2012]. Google Scholar

[107] Mcgowan R W, Gallot G, Grischkowsky D. Propagation of ultrawideband short pulses of terahertz radiation through submillimeter-diameter circular waveguides. Opt Lett, 1999, 24: 1431-1433 CrossRef Google Scholar

[108] Mendis R, Grischkowsky D. Undistorted guided-wave propagation of subpicosecond terahertz pulses. Opt Lett, 2001, 26: 846-848 CrossRef Google Scholar

[109] Mendis R, Grischkowsky D. THz interconnect with low-loss and low-group velocity dispersion. IEEE Microw Wirel Compon Lett, 2001, 11: 444-446 CrossRef Google Scholar

[110] Kanglin W, Mittleman D M. Metal wires for terahertz wave guiding. Nature, 2004, 432: 376-379 CrossRef Google Scholar

[111] Valk N C J, Planken P C M. Effect of a dielectric coating on terahertz surface plasmon polaritons on metal wires. Appl Phys Lett, 2005, 87: 071106-379 CrossRef Google Scholar

[112] Mufei G, Tae-In J, Grischkowsky D. THz surface wave collapse on coated metal surfaces. Opt Express, 2009, 17: 17088-17101 CrossRef Google Scholar

[113] Ito T, Matsuura Y, Miyagi M, et al. Flexible terahertz fiber optics with low bend-induced losses. J Opt Soc America B, 2007, 24: 1230-1235 CrossRef Google Scholar

[114] Yu R J, Zhang B, Zhang Y Q, et al. Proposal for ultralow loss hollow-core plastic bragg fiber with cobweb-structured cladding for Terahertz waveguiding. IEEE Photonic Tech Lett, 2007, 19: 910-912 CrossRef Google Scholar

[115] Qu D, Grischkowsky D, Zhang W. Terahertz transmission properties of thin, subwavelength metallic hole arrays. Opt Lett, 2004, 29: 896-898 CrossRef Google Scholar

[116] Ponseca C S, Pobre R, Estacio E, et al. Transmission of terahertz radiation using a microstructured polymer optical fiber. Opt Lett, 2008, 33: 902-904 CrossRef Google Scholar

[117] Mbonye M, Astley V, Chan W L, et al. A terahertz dual wire waveguide. In: Proceedings of Conference on Lasers and Electro-Optics (CLEO), Baltimore, 2007. 1-2. Google Scholar

[118] Han H, Park H, Cho M, et al. Terahertz pulse propagation in a plastic photonic crystal fiber. Appl Phys Lett, 2002, 80: 2634-2636 CrossRef Google Scholar

[119] Rogalski A, Sizov F. Terahertz detectors and focal plane arrays. Opto-Electron Rev, 2011, 19: 346-404. Google Scholar

[120] Hargreaves S, Lewis R A. Terahertz imaging: materials and methods. J Mater Sci Mater Electron, 2007, 18: 299-303 CrossRef Google Scholar

[121] Sizov F F, Reva V P, Golenkov A G, et al. Uncooled detectors challenges for THz/sub-THz arrays imaging. J Infrared Millimeter Terahertz Waves, 2011, 32: 1192-1206 CrossRef Google Scholar

[122] Wei J, Olaya D, Karasik B S, et al. Ultrasensitive hot-electron nanobolometers for terahertz astrophysics. Nature Nanotech, 2007, 3: 496-500. Google Scholar

[123] Karasik B S, Olaya D, Wei J, et al. Record-low NEP in hot-electron Titanium nanobolometers. IEEE Trans Appl Supercond, 2007, 17: 293-297 CrossRef Google Scholar

[124] Siegel P H, Dengler R J. Terahertz heterodyne imaging part I: introduction and techniques. Int J Infrared Millimeter Waves, 2006, 27: 465-480. Google Scholar

[125] Siegel P H, Dengler R J. Terahertz heterodyne imaging part II: instruments. Int J Infrared Millimeter Waves, 2007, 27: 631-655 CrossRef Google Scholar

[126] Hubers H W. Terahertz heterodyne receivers. IEEE J Sel Topics Quantum Electron, 2008, 14: 378-391 CrossRef Google Scholar

[127] Crowe T W, Mattauch R J, Roser H P, et al. GaAs Schottky diodes for THz mixing applications. Proc IEEE, 1992, 80: 1827-1841 CrossRef Google Scholar

[128] Crowe T W, Bishop W L, Porterfield D W, et al. Opening the terahertz window with integrated diode circuits. IEEE J Solid-State Circ, 2005, 40: 2104-2110 CrossRef Google Scholar

[129] Sankaran S, O K K. Schottky barrier diodes for millimeter wave detection in a foundry CMOS process. IEEE Electron Device Lett, 2005, 26: 492-494 CrossRef Google Scholar

[130] Han R, Zhang Y, Kim Y, et al. Active Terahertz imaging using Schottky diodes in CMOS: array and 860-GHz pixel. IEEE J Solid-State Circ, 2013, 48: 2296-2308 CrossRef Google Scholar

[131] Rogalski A. Infrared Detectors. 2nd ed. Boca Raton: CRC Press, 2010. Google Scholar

[132] Dooley D. Sensitivity of broadband pyroelectric terahertz detectors continues to improve. Laser Focus World, 2010, 46: 49-56. Google Scholar

[133] Richards P L. Bolometers for infrared and millimeter waves. J Appl Phys, 1994, 76: 1-24 CrossRef Google Scholar

[134] Agnese P, Buzzi C, Rey P, et al. New technological development for far-infrared bolometer arrays. In: Proceedings of SPIE Infrared Technology and Applications XXV, Orlando, 2009. 284-290. Google Scholar

[135] Conwell E M. High Field Transport in Semiconductors. New York: Academic Press Inc, 1967. Google Scholar

[136] Phillips T G, Jefferts K B. A low temperature bolometer heterodyne receiver for millimeter wave astronomy. Rev Sci Instrum, 1973, 44: 1009-1014 CrossRef Google Scholar

[137] Vasilyev Y B, Usikova A A, Il'inskaya N D, et al. Highly sensitive submillimeter InSb photodetectors. Semiconductors, 2008, 42: 1234-1236 CrossRef Google Scholar

[138] Moseley H, McCammon D. High performance silicon hot electron bolometers. In: AIP Conference Proceedings, Madison, 2002. 605: 103-106. Google Scholar

[139] Gousev Y P, Gol'tsman G N, Semenov A D, et al. Broadband ultrafast superconducting NbN detector for electromagnetic radiation. J Appl Phys, 1994, 75: 3695-3697 CrossRef Google Scholar

[140] Karasik B S, Cantor R. Optical NEP in hot-electron nanobolometers. arXiv:1009.4676. Google Scholar

[141] Gershenzon E M, Gol'tsman G N, Gogidze I G, et al. Millimeter and submillimeter range mixer based on electron heating of superconducting films in the resistive state. Sov Phys Supercond, 1990, 3: 1582-1597. Google Scholar

[142] Karasik B S, Gol'tsman G N, Voronov B M, et al. Hot electron quasioptical NbN superconducting mixer. IEEE Trans Appl Supercond, 1995, 5: 2232-2235 CrossRef Google Scholar

[143] Prober D E. Superconducting terahertz mixer using a transition-edge microbolometer. Appl Phys Lett, 1993, 62: 2119-2121 CrossRef Google Scholar

[144] Skalare A, McGrath W R, Bumble B, et al. Large bandwidth and low noise in a diffusion-cooled hot-electron bolometer mixer. Appl Phys Lett, 1996, 68: 1558-1560 CrossRef Google Scholar

[145] Dyakonov M, Shur M. Detection, mixing, and frequency multiplication of terahertz radiation by two-dimensional electronic fluid. IEEE Trans Electron Dev, 1996, 43: 380-387. Google Scholar

[146] Tauk R, Teppe F, Boubanga S, et al. Plasma wave detection of terahertz radiation by silicon field effects transistors: Responsivity and noise equivalent power. Appl Phys Lett, 2006, 89: 253511-387 CrossRef Google Scholar

[147] Schuster F, Videlier H, Dupret A, et al. A broadband THz imager in a low-cost CMOS technology. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2011. 42-43. Google Scholar

[148] Sherry H, Grzyb J, Zhao Y, et al. A 1kpixel CMOS camera chip for 25fps real-time terahertz imaging applications. In: Proceedings of IEEE International Solid-State Circuits Conference, San Francisco, 2012. 252-254. Google Scholar

[149] Walton A J, Parkes W, Terry J G, et al. Design and fabrication of the detector technology for SCUBA-2. IEE Proc Sci Meas Tech, 2004, 151: 110-120 CrossRef Google Scholar

[150] Holland W S, Duncan W D, Audley M D, et al. SCUBA-2: a new generation submillimeter imager for the James Clerk Maxwell Telescope. Bull American Astron Soc, 2001, 199: 103-106. Google Scholar

[151] Wang Y, Yang B, Tian Y, et al. Micromachined thick mesh filters for millimeter-wave and terahertz applications. IEEE Trans Terahertz Sci Tech, 2014, 4: 247-253 CrossRef Google Scholar

[152] Dickie R, Cahill R, Fusco V, et al. THz frequency selective surface filters for earth observation remote sensing instruments. IEEE Trans Terahertz Sci Tech, 2011, 1: 450-461 CrossRef Google Scholar

[153] Hu J, Xie S, Zhang Y. Micromachined Terahertz rectangular waveguide bandpass filter on silicon-substrate. IEEE Microw Wirel Compon Lett, 2012, 22: 636-638 CrossRef Google Scholar

[154] Zhuang J, Hao Z-C, Hong W. Silicon micromachined Terahertz bandpass filter with elliptic cavities. IEEE Trans Terahertz Sci Tech, 2015, 5: 1040-1047 CrossRef Google Scholar

[155] Cheng W, Bin L, Jie L, et al. 140GHz waveguide H ladder bandpass filter. In: Proceedings of International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shenzhen, 2012. 1-4. Google Scholar

[156] Lu B, Cui B H. Analysis and design of terahertz waveguide filter. High Power Laser Particle Beams, 2013, 25: 1527-1529 [陆彬, 崔博华. 太赫兹波导滤波器的分析与设计. 强激光与粒子束, 2013, 25: 1527-1529]. Google Scholar

[157] Zhu Z, Zhang X, Gu J, et al. A metamaterial-based Terahertz low-pass filter with low insertion loss and sharp rejection. IEEE Trans Terahertz Sci Tech, 2014, 1: 832-837. Google Scholar

[158] N$\breve{\rm e}$mec H, Duvillaret L, Garet F, et al. Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect. J Appl Phys, 2004, 96: 4072-4075 CrossRef Google Scholar

[159] Chen C-Y, Pan C-L, Hsieh C-F, et al. Liquid-crystal-based terahertz tunable Lyot filter. Appl Phys Lett, 2006, 88: 101107-4075 CrossRef Google Scholar

[160] Libon I H, Baumgärtner S, Hempel M, et al. An optically controllable terahertz filter. Appl Phys Lett, 2000, 76: 2821-2823 CrossRef Google Scholar

[161] Xue C M, Liu J S, Zheng Z, et al. Terahertz filters. Laser Optoelectron Progress, 2008, 45: 43-49 [薛超敏, 刘建胜, 郑铮, 等. 太赫兹滤波器. 激光与光电子学进展, 2008, 45: 43-49]. Google Scholar

[162] Wolf G, Prigent G, Rius E, et al. Band-pass coplanar filters in the G-frequency band. IEEE Microw Wirel Compon Lett, 2005, 15: 799-801 CrossRef Google Scholar

[163] Prigent G, Gianesello F, Gloria D, et al. Bandpass filter for millimeter-wave applications up to 220 GHz integrated in advanced thin SOI CMOS technology on High Resistivity substrate. In: Proceedings of European Microwave Conference, Munich, 2007. 676-679. Google Scholar

[164] Xu Q, Bi X, Wu G. Ultra-compacted sub-terahertz bandpass filter in 0.13 mm SiGe. Electron Lett, 2012, 48: 570-571. Google Scholar

[165] Liu J, Yu Z P, Sun L L. A broadband model over 1-220 GHz for GSG pad structures in RF CMOS. IEEE Electron Device Lett, 2014, 35: 696-698 CrossRef Google Scholar

[166] Clifton B J, Alley G D, Murphy R A, et al. High-performance quasi-optical GaAs monolithic mixer at 110 GHz. IEEE Trans Electron Devices, 1981, 28: 155-157 CrossRef Google Scholar

[167] Douvalis V, Hao Y. A monolithic active conical horn antenna arrays for millimeter and sub-millimeter wave applications. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, Monterey, 2004. 567-570. Google Scholar

[168] Johansson J F, Whyborn N D. The diagonal horn as a sub-millimeter wave antenna. IEEE Trans Microw Theory Tech, 1992, 40: 795-800 CrossRef Google Scholar

[169] Okumura S K, Chikada Y, Kamazaki T, et al. Atacama compact array correlator for atacama large millimeter/submillimeter array. arXiv:1106.4076. Google Scholar

[170] Payne J M. Millimeter and submillimeter wavelength radioastronomy. Proc IEEE, 1989, 77: 993-1017 CrossRef Google Scholar

[171] Nagatsuma T, Hirata A, Sato Y, et al. Sub-terahertz wireless communications technologies. In: Proceedings of the 18th International Conference on Applied Electromagnetics and Communications, Dubrovnik, 2005. 1-4. Google Scholar

[172] Ito H, Nakajima F, Furuta T, et al. Photonic terahertz-wave generation using antenna-integrated. Electron Lett, 2003, 39: 1828-1829 CrossRef Google Scholar

[173] Ren Y-J, Lv P, Chang K. Broadband terahertz antenna for wide band gap semiconductor photoconductive switches. In: Proceedings of IEEE Antennas and Propagation Society International Symposium, San Diego, 2008. 1-4. Google Scholar

[174] Yu M, Xu W W, An D Y, et al. Design of planar terahertz antennas. J Terahertz Sci Electron Inf Tech, 2015, 13: 369-373 [郁梅, 许伟伟, 安德越, 等. 太赫兹平面天线的设计. 太赫兹科学与电子信息学报, 2015, 13: 369-373]. Google Scholar

[175] Zhang Q G. Investigation of photoconductive Terahertz antenna. Dissertation for Ph.D. Degree. Cheng Du: University of Electronic Science and Technology of China, 2013 [张清刚. 光电导太赫兹天线的研究. 博士学位论文. 成都: 电子科技大学, 2013]. Google Scholar

[176] Pacebutas V, Bici$\bar{\rm u}$nas A, Balakauskas S, et al. Terahertz time-domain-spectroscopy system based on femtosecond Yb: fiber laser and GaBiAs photoconducting components. Appl Phys Lett, 2010, 97: 031111-1829 CrossRef Google Scholar

[177] Hao J, Hanson G W. Infrared and optical properties of carbon nanotube dipole antennas. IEEE Trans Nanotech, 2006, 5: 766-775 CrossRef Google Scholar

[178] Nenzi P, Tripaldi F, Varlamava V, et al. On-chip THz 3D antennas. In: Proceedings of IEEE 62nd Electronic Components and Technology Conference, San Diego, 2012. 102-108. Google Scholar

[179] Yang X F. Study on terahertz subharmonic mixer based on the planar schottky diode. Dissertation for Ph.D. Degree. Cheng Du: University of Electronic Science and Technology of China, 2012 [杨晓帆. 基于平面肖特基二极管的太赫兹分谐波混频器研究. 博士学位论文. 成都: 电子科技大学, 2012]. Google Scholar

[180] Shewchun J, Clarke R A, Temple V A K. Experimentally observed admittance properties of the semiconductor,Insulator,Semiconductor (SIS) diode. IEEE Trans Electron Devices, 1972, 19: 1044-1050 CrossRef Google Scholar

[181] Gerecht E, Zhuang Y, Yngvesson K S, et al. NbN hot electron bolometric mixers-a new technology for low-noise THz receivers. IEEE Trans Microw Theory Tech, 1999, 47: 2519-2527 CrossRef Google Scholar

[182] Jang M, Kim Y, Shin J, et al. Characterization of erbium-silicided Schottky diode junction. IEEE Electron Device Lett, 2005, 26: 354-356 CrossRef Google Scholar

[183] van Duzer T, Turner C W. Principles of superconductive devices and circuits. Upper Saddle River: Prentice Hall PTR, 1981. Google Scholar

[184] 巴罗尼.A, 帕特诺.G, 著. 崔广霁, 孟小凡, 译. 约瑟夫森效应原理和应用. 北京: 中国计量出版社, 1988. Google Scholar

[185] Kawamura J, Chen J, Miller D, et al. Low-noise submillimeter-wave NbTiN superconducting tunnel junction mixers. Appl Phys Lett, 1999, 75: 4013-4015 CrossRef Google Scholar

[186] Shan W, Yang J, Shi S, et al. Development of superconducting spectroscopic array receiver: a multibeam 2SB SIS receiver for millimeter-wave radio astronomy. IEEE Trans Terahertz Sci Tech, 2012, 2: 593-604 CrossRef Google Scholar

[187] Thomas B, Maestrini A, Beaudin G. A low-noise fixed-tuned 300-360-GHz sub-harmonic mixer using planar Schottky diodes. IEEE Microw Wirel Compon Lett, 2005, 15: 865-867 CrossRef Google Scholar

[188] Ederra I, Azcona L, Alderman B, et al. A 250 GHz subharmonic mixer design using EBG technology. IEEE Trans Antennas Propag, 2007, 55: 2974-2982 CrossRef Google Scholar

[189] Thomas B, Alderman B, Matheson D, et al. A combined 380 GHz mixer/doubler circuit based on planar Schottky diodes. IEEE Microw Wirel Compon Lett, 2008, 18: 353-355 CrossRef Google Scholar

[190] Wilkinson P, Henry M, Wang H, et al. A 664 GHz sub-harmonic Schottky mixer. In: Proceedings of the 21st International Symposium on Space Terahertz Technology, Oxford, 2010. 413. Google Scholar

[191] Moussessian A, Wanke M C, Li Y, et al. A terahertz grid frequency doubler. IEEE Trans Microw Theory Tech, 1998, 46: 1976-1981 CrossRef Google Scholar

[192] Han R, Afshari E. A high-power broadband passive Terahertz frequency doubler in CMOS. IEEE Trans Microw Theory Tech, 2013, 61: 1150-1160 CrossRef Google Scholar

[193] Woolard D L, Brown E R, Pepper M, et al. Terahertz frequency sensing and imaging: a time of reckoning future applications? Proc IEEE, 2005, 93: 1722-1743. Google Scholar

[194] Mittleman D M, Gupta M, Neelamani R, et al. Recent advances in terahertz imaging. Appl Phys B: Lasers Opt, 1999, 68: 1085-1094 CrossRef Google Scholar

[195] McMillan R W. Terahertz imaging, millimeter-wave radar. In: Advances in Sensing with Security Applications. Berlin: Springer, 2006. 243-268. Google Scholar

[196] Weg C A, Spiegel W V, Henneberger R, et al. Fast active THz cameras with ranging capabilities. J Infrared Millimeter Terahertz Waves, 2009, 30: 1281-1296. Google Scholar

[197] Kulesa C. Terahertz spectroscopy for astronomy: from comets to cosmology. IEEE Trans Terahertz Sci Tech, 2011, 1: 232-240 CrossRef Google Scholar

[198] Davies S R. Receiver technology for terahertz astronomy. In: Proceedings of IEE Colloquium on Terahertz Technology and Its Applications, London, 1997. 1-5. Google Scholar

[199] Walker C K, Kulesa C A. Terahertz astronomy from the coldest place on earth. In: Proceedings of the Joint 30th International Conference on Infrared and Millimeter Waves and 13th International Conference on Terahertz Electronics, Williamsburg, 2005. 1: 3-4. Google Scholar

[200] Wild W. Terahertz heterodyne technology for astronomy and planetary science. In: Proceedings of Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics, Cardiff, 2007. 323-325. Google Scholar

[201] Zhang W, Lei Y Z. Progress in terahertz nondestructive testing. Chinese J Sci Instrum, 2008, 29: 1563-1568 [张雯, 雷银照. 太赫兹无损检测的进展. 仪器仪表学报, 2008, 29: 1563-1568]. Google Scholar

[202] Adam A J L, Planken P C M, Meloni S, et al. TeraHertz imaging of hidden paint layers on canvas. Optics Express, 2009, 17: 3407-240 CrossRef Google Scholar

[203] Zhong H, Xu J, Xie X, et al. Nondestructive defect identification with terahertz time-of-flight tomography. IEEE Sens J, 2005, 5: 203-208 CrossRef Google Scholar

[204] Yamashita M, Otani C, Kawase K, et al. Noncontact inspection technique for electrical failures in semiconductor devices using a laser terahertz emission microscope. Appl Phys Lett, 2008, 93: 041117-208 CrossRef Google Scholar

[205] Takahashi H, Hosoda M. Frequency domain spectroscopy of free-space terahertz radiation. Appl Phys Lett, 2000, 77: 1085-1087 CrossRef Google Scholar

[206] Woodward R M, Cole B E, Wallace V P, et al. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue. Phys Medicine Biol, 2002, 47: 3853-3863 CrossRef Google Scholar

[207] Ashworth P C, Pickwell-MacPherson E, Provenzano E, et al. Terahertz pulsed spectroscopy of freshly excised human breast cancer. Opt Express, 2009, 17: 12444-3863 CrossRef Google Scholar

[208] Orlando A R, Gallerano G P. Terahertz radiation effects and biological applications. J Infrared Millimeter Terahertz Waves, 2009, 30: 1308-1318. Google Scholar

[209] Siegel P H. Terahertz technology in biology and medicine. In: Proceedings of IEEE MTT-S International Microwave Symposium Digest, Fort Worth, 2004. 3: 1575-1578. Google Scholar

[210] Nagel M, Bolivar P H, Brucherseifer M, et al. Integrated THz technology for label-free genetic diagnostics. Appl Phys Lett, 2002, 80: 154-156 CrossRef Google Scholar

[211] Brucherseifer M, Nagel M, Bolivar P H, et al. Label-free probing of the binding state of DNA by time-domain terahertz sensing. Appl Phys Lett, 2000, 77: 4049-4051 CrossRef Google Scholar

[212] Han P Y, Cho G C, Zhang X-C. Time-domain transillumination of biological tissues with terahertz pulses. Opt Lett, 2000, 25: 242-244 CrossRef Google Scholar

[213] Huang S, Wang Y D, Ahuja A, et al. Tissue characterization using terahertz pulsed imaging in reflection geometry. Phys Medicine Biol, 2009, 54: 149-160 CrossRef Google Scholar

[214] Huang S, Ashworth P C, Kan K W, et al. Improved sample characterization in terahertz reflection imaging and spectroscopy. Opt Express, 2009, 17: 3848-3854 CrossRef Google Scholar

[215] Chen Y, Huang S, Pickwell-MacPherson E. Frequency-wavelet domain deconvolution for terahertz reflection imaging and spectroscopy. Opt Express, 2010, 18: 1177-1190 CrossRef Google Scholar

[216] Png G M, Falconer R J, Fischer B M, et al. Terahertz spectroscopic differentiation of microstructures in protein gels. Opt Express, 2009, 17: 13102-1190 CrossRef Google Scholar

[217] Kiwa T, Kondo Y, Minami Y, et al. Terahertz chemical microscope for label-free detection of protein complex. Appl Phys Lett, 2010, 96: 211114-1190 CrossRef Google Scholar

[218] Kemp M C, Cluff J A, Tribe W R. Security applications of terahertz technology. Proc Spie, 2003, 5070: 44-52 CrossRef Google Scholar

[219] Cook D J, Maislin G, Allen M G. Through container THz sensing: applications for explosives screening. In: Proceedings of SPIE Terahertz and Gigahertz Electronics and Photonics III, San Jose, 2004. 5354. Google Scholar

[220] Federici J F, Schulkin B, Huang F, et al. THz imaging and sensing for security applications-explosives, weapons and drugs. Semicon Sci Tech, 2005, 20: 266-280 CrossRef Google Scholar

[221] Kawase K, Ogawa Y, Watanabe Y, et al. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints. Opt Express, 2003, 11: 2549-2554 CrossRef Google Scholar

[222] Kawase K. Terahertz imaging for drug detection and large-scale integrated circuit inspection. Opt Photon News, 2004, 15: 34-39. Google Scholar

[223] Tribe W R, Newnham D A, Taday P F, et al. Hidden object detection: security applications of terahertz technology. In: Proceedings of SPIE Terahertz and Gigahertz Electronics and Photonics III, San Jose, 2004. 5354: 168-176. Google Scholar

[224] Federici J, Moeller L. Review of terahertz and subterahertz wireless communications. J Appl Phys, 2010, 107: 111101-39 CrossRef Google Scholar

[225] Piesiewicz R, Kleine-Ostmann T, Krumbholz N, et al. Short-range ultra-broadband Terahertz communications: concepts and perspectives. IEEE Antennas Propag Mag, 2007, 49: 24-39. Google Scholar

[226] Song H-J, Nagatsuma T. Present and future of terahertz communications. IEEE Trans Terahertz Sci Tech, 2011, 1: 256-263 CrossRef Google Scholar