logo

SCIENTIA SINICA Informationis, Volume 46 , Issue 10 : 1359-1371(2016) https://doi.org/10.1360/N112016-00067

A source transfer domain decomposition method for time-harmonic elastic wave equations

More info
  • ReceivedApr 5, 2016
  • AcceptedJul 7, 2016
  • PublishedOct 25, 2016

Abstract


Funded by

国家重点基础研究发展计划(973)

(2011CB309701)

国家高技术研究发展计划(863)

(2012AA01A30901)

国家自然科学基金(11501559)

国家自然科学基金(91430215)

国家自然科学基金(91530323)

国家自然科学基金(11321061)

中国科学院国家数学与交叉科学研究中心(NCMIS)


References

[1] {Chen Z, Xiang X}. {A source transfer domain decomposition method for Helmholtz equations in unbounded domain}. SIAM J Numer Anal, 2013, 51: 2331-2356 CrossRef Google Scholar

[2] {Chen Z, Xiang X, Zhang X}. {Convergence of the PML method for elastic wave scattering problems}. Math Comp, 2016, 85: 2687-2714 CrossRef Google Scholar

[3] {Benamou J D, Després B}. {A domain decomposition method for the Helmholtz equation and related optimal control problems}. J Comput Phys, 1997, 136: 68-82 CrossRef Google Scholar

[4] {Gander M J, Magoules F, Nataf F}. {Optimized Schwarz methods without overlap for the Helmholtz equation}. SIAM J Sci Comput, 2002, 24: 38-60 CrossRef Google Scholar

[5] {Brandt A, Livshits I}. {Wave-ray multigrid method for standing wave equations}. Electron Trans Numer Anal, 1997, 6: 162-181. Google Scholar

[6] {Elman H C, Ernst O G, O'leary D P}. {A multigrid nethod enhanced by Krylov subspace iteration for discrete Helmholtz equations}. SIAM J Sci Comput, 2001, 23: 1291-1315 CrossRef Google Scholar

[7] {Liu F, Ying L}. {Recursive sweeping preconditioner for 3D Helmholtz equation}. arXiv:1502.07266, 2015. Google Scholar

[8] {Liu F, Ying L}. {Additive sweeping preconditioner for the Helmholtz equation}. arXiv:1504.04058, 2015. Google Scholar

[9] {Luo S, Qian J, Burridge R}. {Fast Huygens sweeping method for Helmholtz equations in inhomogeneous media in the high frequency regime}. J Comput Phys, 2014, 270: 378-401 CrossRef Google Scholar

[10] {Poulson J, Engquist B, Li S, et al}. {A parallel sweeping preconditioner for heterogenous 3D Helmholtz euqations}. SIAM J Sci Comput, 2013, 35: 194-212 CrossRef Google Scholar

[11] {Stolk C}. {A rapidly converging domain decomposition method for the Helmholtz equation}. J Comput Phys, 2013, 241: 240-252 CrossRef Google Scholar

[12] {Zepeda-Nú\ {n}ez L, Demanet L}. {The method of polarized traces for the 2D Helmholtz equation}. J Comput Phys, 2016, 308: 347-388 CrossRef Google Scholar

[13] {Engquist B, Ying L}. {Sweeping preconditioner for the Helmholtz equation: moving perfectly matched layers}. Multiscle Model Simul, 2011, 9: 686-710 CrossRef Google Scholar

[14] {Chen Z, Xiang X}. {A source transfer domain decomposition method for Helmholtz equations in unbounded domain, part II: extensions}. Numer Math: Theory, Meth Appl, 2013, 6: 538-555. Google Scholar

[15] {Du Y, Wu H J}. {An improved source transfer domain decomposition for Helmholtz equations in unbounded domain.} arXiv:1505.06052, 2015. Google Scholar

[16] {Chew W C, Weedon W}. {A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates}. Microw Opt Tech Lett, 1994, 7: 599-604 CrossRef Google Scholar

[17] van de Vosse F N, Minev P D. Spectral Elements Methods: Theory and Applications. EUT Report 96-W-001 ISBN 90-236-0318-5. Eindhoven University of Technology, 1996. Google Scholar

[18] {Amestoy P R, Duff I S, L'Excellent J Y, et al}. {A fully asynchronous multifrontal solver using distributed dynamic scheduling}. SIAM J Matrix Anal Appl, 2001, 23: 15-41 CrossRef Google Scholar

[19] {Amestoy P R, Guermouche A, L'Excellent J Y, et al}. {Hybrid scheduling for the parallel solution of linear systems}. Parall Comput, 2006, 32: 136-156 CrossRef Google Scholar

[20] {Bourgeois A, Bourget M, Lailly P, et al}. {Marmousi, model and data}. Marmousi Exper, 1991, 5-16. Google Scholar