SCIENTIA SINICA Informationis, Volume 46 , Issue 10 : 1442-1464(2016) https://doi.org/10.1360/N112016-00066

The toolbox PHG and its applications

More info
  • ReceivedMar 29, 2016
  • AcceptedJul 6, 2016
  • PublishedOct 25, 2016


Funded by







国家重点基础研究发展计划(973 计划)


国家高技术研究发展计划(863 计划)




[1] Babu\v ska I, Rheinboldt W C. $A posteriori$ error estimates for the finite element method. Int J Numer Meth Eng, 1978, 11: 1592-1615. Google Scholar

[2] Babu\v ska I, Rheinboldt W C. Adaptive approaches and reliability estimates in finite element analysis. Comput Meth Appl Mech Eng, 1979, 17/18: 519-540 CrossRef Google Scholar

[3] Babu\v ska I, Suri M. The $p$ and $h$-$p$ versions of the finite element method, basic principles and properties. SIAM Rev, 1994, 36: 578-632 CrossRef Google Scholar

[4] Aksoylu B, Bond S, Holst M. An Odyssey into local refinement and multilevel preconditioning III: implementation and numerical experiments. SIAM J Sci Comput, 2003, 25: 478-498 CrossRef Google Scholar

[5] Rivara M C. Mesh refinement processes based on the generalized bisection of simplices. SIAM J Numer Anal, 1984, 21: 604-613 CrossRef Google Scholar

[6] Plaza A, Rivara M C. Mesh refinement based on the 8-tetrahedra longest-edge partition. In: Proceedings of the 12th International Meshing Roundtable, Sandia National Laboratories, Santa Fe, 2003. 67-78. Google Scholar

[7] Rivara M C, Pizarro D, Chrisochoides N. Parallel refinement of tetrahedral meshes using terminal-edge bisection algorithm. In: Proceedings of the 13th International Meshing Roundtable, Williamsbourg, 2004. 19-22. Google Scholar

[8] Kossaczky I. A recursive approach to local mesh refinement in two and three dimensions. J Comput Appl Math, 1994, 55: 275-288 CrossRef Google Scholar

[9] Liu A, Joe B. Quality local refinement of tetrahedral meshes based on bisection. SIAM J Sci Comput, 1995, 16: 1269-1291 CrossRef Google Scholar

[10] Arnold D N, Mukherjee A, Pouly L. Locally adapted tetrahedral meshes using bisection. SIAM J Sci Comput, 2000, 22: 431-448 CrossRef Google Scholar

[11] Zhang L B. A parallel algorithm for adaptive local refinement of tetrahedral meshes using bisection. Numer Math Theory Meth Appl, 2009, 2: 65-89. Google Scholar

[12] Bastian P, Birken K, Johannsen K, et al. UG--A flexible software toolbox for solving partial differential equations. Comput Visual Sci, 1997, 1: 27-40 CrossRef Google Scholar

[13] Bangerth W, Hartmann R, Kanschat G. deal.II--a general-purpose object-oriented finite element library. ACM Trans Math Softw, 2007, 33: 24. Google Scholar

[14] Kirk B S, Peterson J W, Stogner R H, et al. libMesh : a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng Comput, 2006, 22: 237-254 CrossRef Google Scholar

[15] Logg A, Wells G N. DOLFIN: automated finite element computing. ACM Trans Math Softw, 2010, 37: 20. Google Scholar

[16] Schmidt A, Siebert K G. ALBERTA: an adaptive hierarchical finite element toolbox. http://www.alberta-fem.de/. Google Scholar

[17] Chen L. iFEM: an Integrated Finite Element Methods Package in MATLAB. Technical Report, University of California at Irvine. 2009. Google Scholar

[18] Bank E, Mittelmann H. PLTMG: a software package for solving elliptic partial differential equations. SIAM Rev, 1994, 36: 134 CrossRef Google Scholar

[19] Berger M, Bokhari S. A partitioning strategy for nonuniform problems on multiprocessors. IEEE Trans Comput, 1989, C-36: 279-301. Google Scholar

[20] Chung F R K. Spectral Graph Theory. Providence: American Mathematical Society, 1997. Google Scholar

[21] Urschel J C, Xu J, Hu X, et al. A cascadic multigrid algorithm for computing the Fiedler vector of graph laplacians. J Comput Math, 2015, 33: 209-226 CrossRef Google Scholar

[22] Liu H, Zhang L B. Existence and construction of Hamiltonian paths and cycles on conforming tetrahedral meshes. Int J Comput Math, 2011, 88: 1137-1143 CrossRef Google Scholar

[23] Liu H, Chen Z X, Zhang L B. Parallel construction of Hamiltonian paths for conforming tetrahedral meshes. Int J Comput Math, 2013, 90: 1366-1372 CrossRef Google Scholar

[24] Liu H, Leng W, Cui T. Development of encoding and decoding algorithms for high dimensional Hilbert curves. J Numer Meth Comput Appl, 2015, 36: 42-58 [刘辉, 冷伟, 崔涛. 高维 Hilbert 曲线的编码与解码算法设计. 数值计算与计算机应用, 2015, 36: 42-58]. Google Scholar

[25] Catalyurek U, Bozdag D, Teresco J, et al. Zoltan: parallel partitioning, load balancing and data-management services. http://www.cs.sandia.gov/Zoltan/. Google Scholar

[26] Liu H, Leng W, Cui T. Study of dynamic load balancing methods for parallel adaptive finite element computation. J Numer Meth Comput Appl, 2015, 36: 166-184 [刘辉, 冷伟, 崔涛. 并行自适应有限元计算中的负载平衡研究. 数值计算与计算机应用, 2015, 36: 166-184]. Google Scholar

[27] Cockburn B, Karniadakis G E, Shu C W. Discontinuous Galerkin methods: theory, computation and applications. In: Lecture Notes in Computational Science and Engineering. Berlin: Springer-Verlag, 2000. 11: 1119-1148. Google Scholar

[28] Liu H, Leng W, Cui T. A new $hp$-adaptive strategy for $hp$-adaptive finite element methods. J Numer Meth Comput Appl, 2015, 36: 100-112 [刘辉, 冷伟, 崔涛. $hp$ 自适应有限元计算中一种新的自适应策略. 数值计算与计算机应用, 2015, 36: 100-112]. Google Scholar

[29] Ainsworth M, Coyle J. Hierarchic finite element bases on unstructured tetrahedral meshes. Int J Numer Meth Eng, 2003, 58: 2103-2130 CrossRef Google Scholar

[30] Cai W, Wu J, Xin J. Divergence-free $\mathbf{H}(\text{div})$-conforming hierarchical bases for magnetohydrodynamics (MHD). Commun Math Stat, 2013, 1: 19 CrossRef Google Scholar

[31] Xin J, Guo N, Cai W. On the construction of well-conditioned hierarchical bases for tetrahedral $\mathbf{H}(\text{curl})$-conforming Nédélec element. J Comput Math, 2011, 29: 526-542 CrossRef Google Scholar

[32] Cohen G, Joly P, Roberts J E, et al. Higher order triangular finite elements with mass lumping for the wave equation. SIAM J Numer Anal, 2001, 38: 2047-2078 CrossRef Google Scholar

[33] Chin-Joe-Kong M J S, Mulder W A, Veldhuizen M V. Higher-order triangular and tetrahedral finite elements with mass lumping for solving the wave equation. J Eng Math, 1999, 35: 405-426 CrossRef Google Scholar

[34] Mulder W A. New triangular mass-lumped finite elements of degree six for wave propagation. Prog Electrom Res, 2013, 141: 671-692 CrossRef Google Scholar

[35] Zhang L B, Cui T, Liu H. A set of symmetric quadrature rules on triangles and tetrahedra. J Comput Math, 2009, 27: 89-96. Google Scholar

[36] Ma S C. Numerical simulation framework for elastic wave with 3D unstructured Grid. Dissertation for Ph.D. Degree. Beijing: University of Chinese Academy of Sciences, 2015. 45-52 [马仕超. 三维非结构网格弹性波数值模拟支撑框架. 博士学位论文. 北京: 中国科学院大学, 2015. 45-52]. Google Scholar

[37] Dörfler W. A convergent adaptive algorithm for Poisson's equation. SIAM J Numer Anal, 1996, 33: 1106-1124 CrossRef Google Scholar

[38] Morin P, Nochetto R H, Siebert K G. Convergence of adaptive finite element methods. SIAM Rev, 2002, 44: 631-658 CrossRef Google Scholar

[39] Liu H, Zhang L B. Parallel implementation of commonly used marking strategies in the adaptive finite element toolbox PHG. J Numer Meth Comput Appl, 2009, 30: 315-320 [刘辉, 张林波. 自适应有限元常用标记策略及其在 PHG 中的并行实现. 数值计算与计算机应用, 2009, 30: 315-320]. Google Scholar

[40] Hestenes M R, Stiefel E. Methods of conjugate gradients for solving linear systems. J Res Natl Bureau Stan, 1952, 49: 409-436 CrossRef Google Scholar

[41] Saad Y, Schultz M H. GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. Soc Ind Appl Math, 1986, 7: 856-869. Google Scholar

[42] Cai X C, Sarkis M. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J Sci Comput, 1999, 21: 792-797 CrossRef Google Scholar

[43] Hiptmair R, Xu J. Nodal auxiliary space preconditioning in $\mathbf{H}(\text{curl})$ and $\mathbf{H}(\text{div})$ spaces. SIAM J Numer Anal, 2007, 45: 2483 CrossRef Google Scholar

[44] Knyazev A. Block locally optimal preconditioned eigenvalue xolvers. http://math.ucdenver.edu/aknyazev/software/ BLOPEX/. Google Scholar

[45] Lehoucq R, Maschhoff K, Sorensen D, et al. The ARPACK home page. http://www.caam.rice.edu/software/ ARPACK/. Google Scholar

[46] Cheng Z G, Norio T, Behzard F. Electromagnetic and Thermal Field Modeling and Application in Electrical Engineering. Beijing: Science Press, 2009 [程志光, 高桥则雄, 博扎德$\cdot$弗甘尼. 电气工程电磁热场模拟与应用. 北京: 科学出版社, 2009]. Google Scholar

[47] Demkowicz L, Kurtz J, Pardo D, et al. Computing With $hp$-Adaptive Finite Elements (Frontiers: Three Dimensional Elliptic and Maxwell Problems with Applications). Boca Raton: Chapman & Hall/CRC, Taylor & Francis Group, 2008. 2. Google Scholar

[48] Ammari H, Buffa A, Nédélec J. A justification of eddy current model for the maxwell equations. SIAM J Appl Math, 2000, 60: 1805-1823 CrossRef Google Scholar

[49] Beck R, Hiptmair R, Hoppe R, et al. Residual based $a posteriori$ error estimators for eddy current computation. Math Model Numer Anal, 2000, 34: 159-182 CrossRef Google Scholar

[50] Chen Z, Wang L, Zheng W. An adaptive multilevel method for time-harmonic Maxwell equations with singularities. SIAM J Sci Comput, 2007, 29: 118-138 CrossRef Google Scholar

[51] Zheng W, Chen Z, Wang L. An adaptive finite element method for the $H$-$\Phi$ formulation of time-dependent eddy current problems. Numer Math, 2006, 103: 667-689 CrossRef Google Scholar

[52] Hiptmair R, Xu J. Auxiliary space preconditioning for edge elements. IEEE Trans Magn, 2008, 44: 938-941 CrossRef Google Scholar

[53] Yuan L, Hu Q Y. A planewave discontinuous Petrov-Galerkin method for Helmholtz equation and time-harmonic Maxwell equations with complexwave numbers. J Numer Meth Comput Appl, 2015, 36: 185-196 [袁龙, 胡齐芽. 复波数 Helmholtz 方程和时谐 Maxwell 方程组的平面波间断 Petrov-Galerkin 方法. 数值计算与计算机应用, 2015, 36: 185-196]. Google Scholar

[54] Wang P Z, Liu M F, Chen S C. Double set parameter cubic Morley element and anisotropic convergence. J Numer Meth Comput Appl, 2014, 35: 305-312 [王培珍, 刘鸣放, 陈绍春. 双参数长方体 Morley 元及其各向异性收敛性. 数值计算与计算机应用, 2014, 35: 305-312]. Google Scholar

[55] Chen Z M, Chen J Q, Cui T, et al. An adaptive finite element method for the eddy current model with circuit/field couplings. SIAM J Sci Comput, 2010, 2: 1020-1042. Google Scholar

[56] Jiang X, Zheng W. An efficient eddy current model for nonlinear Maxwell equations with laminated conductors. SIAM J Appl Math, 2012, 72: 1021-1040 CrossRef Google Scholar

[57] Zheng W, Cheng Z. An inner-constrained separation technique for 3D finite element modeling of GO silicon steel laminations. IEEE Trans Magn, 2012, 48: 2277-2283 CrossRef Google Scholar

[58] Zheng W Y, Chen X H. Subspace correction method for computing magnetic shields in large power transformers. IEEE Trans Magnetics, 2015, 51: 7002006. Google Scholar

[59] Jiang X, Zheng W. Homogenization of quasi-static Maxwell's equations. Multiscal Model Simulat SIAM Interdiscip J, 2014, 12: 152-180 CrossRef Google Scholar

[60] Li P, Zheng W. An $H$-$\Phi$ formulation for the three-dimensional eddy current problem in laminated structures. J Differ Equations, 2013, 254: 3476-3500 CrossRef Google Scholar

[61] Cheng Z G, Takahashi N, Forghani B. TEAM Problem 21 Family (V.\ 2009). Approved by the International Compumag Society Board at Compumag-2009, Florianópolis, Brazil. http://www.compumag.org/jsite/team.html. Google Scholar

[62] Hille B. Ion Channels of Excitable Membranes. 3rd ed. Sunderland: Sinauer, 2001. Google Scholar

[63] Tu B, Chen M X, Xie Y, et al. A parallel finite element simulator for ion transport through three-dimensional ion channel systems. J Comput Chem, 2013, 34: 2065-2078 CrossRef Google Scholar

[64] Liu T T, Bai S Y, Tu B, et al. Mesh construction for membrane-channel protein system for finite element simulations. Mol Based Math Biol, 2015, 3: 2299-3266. Google Scholar

[65] Lu B Z, Zhou Y C. Poisson-Nernst-Planck equations for simulating biomolecular diffusion-reaction processes II: size effects on ionic distributions and diffusion-reaction rates. Biophys J, 2011, 100: 2475-2485 CrossRef Google Scholar

[66] Bayrhuber M, Meins T, Habeck M, et al. Structure of the human voltage-dependent anion channel. Proc Natl Acad Sci USA, 2008, 105: 15370-15375 CrossRef Google Scholar

[67] Tu B, Xie Y, Zhang L B, et al. Stabilized finite element methods to simulate the conductances of ion channels. Comput Phys Commun, 2015, 188: 131-139 CrossRef Google Scholar

[68] Xu J J, Xie Y, Lu B Z. A parallel finite element solver for biomolecular simulations based on the toolbox PHG. J Numer Meth Comput Appl, 2016, 37: 67-82 [许竞劼, 谢妍, 卢本卓. 一个基于 PHG 平台的并行有限元生物分子模拟解法器. 数值计算与计算机应用, 2016, 37: 67-82]. Google Scholar

[69] Kamon M, Tsuk M J, White J K. FastHenry: a multipole accelerated 3-D inductance extraction program. IEEE Trans Microw Theory Tech, 1994, 42: 1750-1758 CrossRef Google Scholar

[70] Zhu Z, Song B, White B. Algorithms in FastImp: a fast and wideband impedance extraction program for complicated 3-D geometries. IEEE Trans Comput-Aided Design Integr Circ Syst, 2005, 24: 981-998 CrossRef Google Scholar

[71] Nabors K, White J. FastCap: a multipole accelerated 3-D capacitance extraction program. IEEE Trans Comput-Aided Design Integr Circ Syst, 1991, 10: 1447-1459 CrossRef Google Scholar

[72] Ozgun O, Mittra R, Kuzuoglu M. CBFEM-MPI: a parallelized version of characteristic basis finite element method for extraction of 3-D interconnect capacitances. IEEE Trans Adv Pack, 2009, 32: 164 CrossRef Google Scholar

[73] Sterz O. Multigrid for time-harmonic eddy currents without gauge. In: Scientific Computing in Electrical Engineering. Berlin: Springer, 2004. 382-389. Google Scholar

[74] Lemke P, Ren J, Alley R B, et al. Observations: changes in snow, ice and frozen ground. In: Climate Change 2007: the Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2007. 337-383. Google Scholar

[75] Lythe M B, Vaughan D G, the BEDMAP Group. Bedmap: a new ice thickness and subglacial topographic model of antarctica. J Geophys Res, 2001, 106: 11335-11351 CrossRef Google Scholar

[76] Bamber J L, Layberry R L, Gogineni S P. A new ice thickness and bed data set for the Greenland ice sheet, 1. measurement, data reduction, and errors. J Geophys Res, 2001, 106: 33733-33780. Google Scholar

[77] Nye J F. The distribution of stress and velocity in glaciers and ice sheets. Proc Royal Soc London Ser A, 1957, 239: 113-133 CrossRef Google Scholar

[78] Paterson W. The Physics of Glaciers. Oxford: Elsevier Science, 1994. Google Scholar

[79] Leng W, Ju L, Gunzburger M, et al. A parallel computational model for three-dimensional, thermo-mechanical stokes flow simulations of glaciers and ice sheets. Commun Comput Phys, 2014, 16: 1056-1080 CrossRef Google Scholar

[80] Leng W, Ju L, Gunzburger M, et al. A parallel high-order accurate finite element nonlinear Stokes ice sheet model and benchmark experiments. J Geophys Res, 2012, 117: 1-24. Google Scholar

[81] Sokolov A, Olshanskii M A, Turek S. A discrete projection method for incompressible viscous flow with Coriolis force. Comput Meth Appl Mech Eng, 2008, 197: 4512-4520 CrossRef Google Scholar

[82] Sokolov A, Turek S, Olshanskii M A. Numerical study of a new discrete projection method for rotating incompressible flows. Electron Trans Numer Anal, 2008, 32: 49-62. Google Scholar

[83] Pattyn F, Perichon L, Aschwanden A, et al. Benchmark experiments for higher-order and full-Stokes ice sheet models (ISMIP-HOM). Cryosphere, 2008, 2: 95-108 CrossRef Google Scholar

[84] Shannon S R, Payne A J, Bartholomew I D, et al. Enhanced basal lubrication and contribution of the Greenland ice sheet to future sea-level rise. Proc Natl Academy Sci USA, 2013, 110: 14156-14161 CrossRef Google Scholar

[85] Komatitsch D, Tsuboi S, Chen J, et al. A 14.6 billion degrees of freedom, 5 teraflops, 2.5 terabyte earthquake simulation on the Earth Simulator. In: Proceedings of the 2003 ACM/IEEE Conference on Supercomputing (SC'03). New York: ACM, 2003. 4-11. Google Scholar

[86] Cui Y, Poyraz E, Olsen K B, et al. Physics-based seismic hazard analysis on petascale heterogeneous supercomputers. In: Proceedings of the 2013 ACM/IEEE International Conference on High Performance Computing, Networking, Storage and Analysis (SC'13). New York: ACM, 2013. 1-12. Google Scholar

[87] Heinecke A, Breuer A, Rettenberger S, et al. Petascale high order dynamic rupture earthquake simulations on heterogeneous supercomputers. In: Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC'14). Piscataway: IEEE Press, 2014. 3-14. Google Scholar

[88] Ichimura T, Fujita K, Quinay P E B, et al. Implicit nonlinear wave simulation with 1.08T DOF and 0.270T unstructured finite elements to enhance comprehensive earthquake simulation. In: Proceedings of the ACM/IEEE International Conference for High Performance Computing, Networking, Storage and Analysis (SC'15). New York: ACM, 2015. 1-12. Google Scholar

[89] Mazzieri I, Stupazzini M, Guidotti R, et al. SPEED: spectral elements in elastodynamics with discontinuous Galerkin: a non-conforming approach for 3D multi-scale problems. Int J Numerical Meth Eng, 2013, 95: 991-1010 CrossRef Google Scholar

[90] Moczo P, Kristek J, Galis M, et al. The finite-difference and finite-element modeling of seismic wave propagation and earthquake motion. Acta Phys Slovaca, 2007, 57: 177-406. Google Scholar

[91] Komatitsch D, Tromp J. Introduction to the spectral-element method for 3-D seismic wave propagation. Geophys J Int, 1999, 139: 806-822 CrossRef Google Scholar

[92] Dumbser M, Käser M. An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes-II. Three-dimensional isotropic case. Geophys J Int, 2006, 167: 319-336. Google Scholar

[93] Chew W C, Weedon W H. A 3D perfectly matched medium from modified Maxwell's equations with stretched coordinates. Microw Opt Tech Lett, 1994, 7: 599-604 CrossRef Google Scholar

[94] Cohen G, Fauqueux S. Mixed spectral finite elements for the linear elasticity system in unbounded domains. SIAM J Sci Comput, 2005, 26: 864-884 CrossRef Google Scholar

[95] Lin D, Cui T, Leng W, et al. An efficient parallel spectral element scheme for solving seismic wave equation. J Comput Res Dev, 2016, 53: 1147-1155 [林灯, 崔涛, 冷伟, 等. 一种求解地震波方程的高效并行谱元格式. 计算机研究与发展, 2016, 53: 1147-1155]. Google Scholar

[96] Fichtner A. Full Seismic Waveform Modelling and Inversion. Heidelberg: Spinger, 2010. Google Scholar

[97] Festa G, Vilotte J. The Newmark scheme as velocity-stress time-staggering: an efficient PML implementation for spectral element simulations of elastodynamics. Geophys J Int, 2005, 161: 789-812 CrossRef Google Scholar

[98] Fang J, Sips H, Zhang L L, et al. Test-driving Intel Xeon Phi. In: Proceedings of the 5th ACM/SPEC International Conference on Performance Engineering (ICPE'14). New York: ACM, 2014. 137-148. Google Scholar